
A Formulation of Second-Order Matching

Djamel Ouassim Ait-Moussa

August 17, 2025

Higher-order unification is the problem of solving semantic equations between
arbitrary programs, understood as λ-terms. While higher-order unification is
undecidable in general (Huet, 1976), decidable special cases have been extensively
investigated (Huet and Lang, 1978; Miller, 1992; Dowek, 2001). Among them, second-
order matching has been proposed as a generalization of the first-order pattern-
matching construct found in functional languages to second-order terms, that is, to
syntax trees with variable binding.

In this report, we revisit the Huet-Lang algorithm (Huet and Lang, 1978) for
solving second-order matching problems. We reformulate their algorithm in mod-
ern notation, using a non-deterministic system of inference rules to express the
available canonical solutions to a given matching problem. This allows us to specify
the algorithm in a concise way, emphasizing its core steps and simplifying its
correctness proof.

1 Introduction

Unification problems predate the study of programming languages, and were introduced in the
context of propositional logic (Herbrand, 1930). A unification problem is an equation of the form
t1 = t2 where t1 and t2 are syntactic objects called terms that contain variables representing
unknowns. Solving a unification problem means finding values for some or all of the variables
in order to make the left-hand side and the right-hand side of the equation syntactically equal.
The action of replacing each variable with its chosen value is called substitution.

1.1 First-order syntax

Terms can represent objects of different natures. An example of a term in propositional logic
would be

t1 = (A =⇒ (B ∧A =⇒ D)) ∨ C

where A,B,C,D are constant propositions. Terms can also represent algebraic expressions,
for example

u1 = ((3 + 5)× 7)− 12,

1

∨

=⇒

x =⇒

∧

B x

y

C -

×

+

3 5

7

12

::

x ::

2 ::

y nil

Figure 1: Terms t2, u2 and v2 seen as trees

or inductive data structures that can be found in functional programming languages, such as

v1 = 1 :: (2 :: (3 :: (4 :: nil))),

which represents the list usually denoted by [1; 2; 3; 4].
The three example terms above are closed, meaning that they contain no variable. In almost

all situations where we reason about syntactic objects, the need to refer to “unknown” or
“undetermined” subterms arises, and it is answered by adding variables to the terms. We give
three example terms with variables.

t2 = (x =⇒ (B ∧ x =⇒ y)) ∨ C

u2 = (x× 7)− 12

v2 = x :: (2 :: y)

We give meaning to the concept of a variable through the operation of substitution. If we
replace each occurence of x by the term A and each occurence of y by the term D in t2,
we get (A =⇒ (B ∧ A =⇒ D)) ∨ C which corresponds to the term t1 ; in that case
we write t2 = t1[x 7→ A, y 7→ D]. We see that we also have u2 = u1[x 7→ 3 + 5] and v2 =
v1[x 7→ 1, y 7→ (3 :: (4 :: nil))].

It can be useful to see terms as trees, where internal nodes are operator symbols taking their
arguments as children, and leaves are either variables or constant operators. Figure 1 shows
what the terms defined above would look like.

Looking at terms of trees, we can see that there is no syntactical difference between terms
of different languages and they are fully distinguished by which operators are used. We can
therefore study problems of unification and matching in a uniform way by abstracting over the
set of operators in use in a given language. We call this set the signature of this language. The
languages of t2 and u2 are characterized respectively by the signatures Σt and Σu defined as
follows.

Σt = { ∨ : (2),∧ : (2), =⇒ : (2),¬ : (1) }
Σu = { + : (2),× : (2),− : (2), / : (2) }

2

We assigned a number, called arity, to each operator in each language, which represent the
number of argument the operator has. This notion of arity is insufficient if we want to define a
signature for the term v2, because there are two distinct types of terms in its language: numbers
and lists. In that case, we need a way to specify the fact that the operator :: only accepts a
number as its first argument, and a list as its second argument, and that it outputs a list as a
result. If we denote the type of lists by L and the type of numbers by N, we can define a

Σv = { (::) : N× L → L }.

We have just (informally) defined what is called first-order abstract syntax, the setting where
first-order unification is studied. For the purpose of strudying second-order matching, we will
introduce, later, an even more refined notion of arity that allows us to work with terms binding
variables (sections 1.4 and 2.2).

1.2 First-order unification

Let us present first-order unification using the signature of simple types that is used in ML-like
functional programming languagues,

Σ = {N(1),→ (2)},

where N is the type of integers, and x → y denotes the type of functions from x to y. ML-like
languages support generic types, that is types that are not closed (i.e. that contain type variables).
So a typical program might, at a given time, have in its context a function f1 of type x → x,
and a term f2 of type y. When encountering the expression (f1f2), the type-checker needs
to make sure that the type of f2 (i.e. y) and the type of the argument of f1 (i.e. x) are the
same. It therefore needs to unify the two type expressions, or deem the program ill typed if it is
impossible to unify them. In this example, a possible substitution is [x 7→ N, y 7→ N] which
makes f1 of type N → N and f2 of type N. But another possible substitution is [x 7→ y], which
is more general that the first one because it lets the type checker avoid commiting to a choice
for the variable y : it can decide it is indeed N later, or make another choice for it depending on
future information. In this situation we say that the second substitution is more general than
the first one.

We can ask two questions: if an equation has a solution, is there a always a “best” substitution
in the sense that it is more general than any other solution substitution? And if the answer is
yes, can we algorithmically find this most general substitution? Robinson (1965) proved that
the existence of a solution is decidable, and that any solvable first-order unification problem
has a computable most general solution.

1.3 First-order matching

Matching is a special case of unification, where in an equation t = u, only t may contain
variables. In other words, u is closed and we are looking for a substitutionσ such that t[σ] = u.

Since first-order unification is decidable, so is first-order matching. But we are more interesed
in the latter as an expressive construct in functional programming languages : pattern matching.

3

app

fun

x +

x x

y

(a) Seeing w as a first-order term

app

fun

λx

+

x x

y

(b) Incorporating variable binding in w’s representa-
tion

Figure 2: Representing the term w by a tree

It allows programmers to deconstruct terms of a sum type (which are, in their simplest form,
first-order terms over a user-defined signature) in an expressive way. For example, if we write

match 1 :: (2 :: (3 :: (4 :: nil))) with
| x :: (2 :: y) −→ x :: y

| x −→ x,

we obtain the solution substitution [x 7→ 1, y 7→ (3 :: 4 :: nil)], and therefore this expression
evaluates to the list [1; 3; 4].

1.4 Second-order syntax

We would like to extend the pattern matching construct to not only work on inductive terms of
a sum type, but also on terms representing programs. However, first-order abstract syntax is no
expressive enough to represent programs, as it lacks the essential notion of variable binding.
For example, consider the following program in a language having only anonymous functions,
applications and additions as constructs.

w = (fun x. x+ x)y

If we want to look at it as a first-order term, we might define the signature

Σbad = { fun : T× T → T,app : T× T → T },+ : T× T → T }

where T is the unique type of terms. We would then represent the term w by the tree in fig. 2a.
We see already see two problems in our approach. First, our term seems to have two variables,
x and y. But we did not intend for x to be an unknown in our term, it is bound in the argument
of the fun operator and we do not want to be able to substitute it. In fact, we want to be able
to say that w = fun z. z + z for any variable z. Following this observation, we see that what
we considered as the first argument to the fun operator, the variable ”x”, is not a subterm, but
only an indicator that the only subterm of fun, x+ x, binds the variable x.

4

We therefore need to enrich our signatures with a construct allowing us to specify that an
operator’s argument binds a certain number of variables on one hand, and enrich our syntax
with a generic binding construct on the other hand. A good signature for our small language
here would be

Σgood = { fun : (T → T) → T,app : T× T → T },+ : T× T → T }.

The operator fun now has only one argument of type T × T, meaning that it represents a
term of type T in which a variable of type T is bound. The term w can then be seen as the
tree in section 1.4, in which the node (λx) represents binding. A variable x appearing in a
second-order tree can now be in one of two cases: it either has a close ancestor node λx, in
which case we say it is bound by that node, or it has no ancestor of that form and we say it
is free in the term represented by that tree. The substitution we define for second-order terms
only replaces free variables, and does not have access to bound variables. We present these
concepts more formally in section 2.

Huet (1976) proved that second-order unification is undecidable, and that second-order
matching is still decidable in the second-order.

1.5 Second-order matching

Second-order matching is decidable, and when a solution exists, it is computable. But second-
order matching differs from the first-order case in that a solution is no longer a most general
substitution, but a most general set of independent substitutions.

We give a simple example with the following matching problem.

Σ = { A : T }
t = f(A)

u = A

The variable f here is of type T → T : it takes an argument of type T and the result must match
the term A of type T. Therefore we must replace f with a term binding one variable. One
solution is the substitution

σ1 = [f 7→ λx.x],

which maps f to the identity function. Another solution is the substituion

σ2 = [f 7→ λx.A],

which maps f to the constant function mapping every argument to A. Both substitutions make
the term t match the term u, but neither one is more general than the other.

In section 3.1, we show that the solution set still has a structure and can be charactarized in a
straightforward way. In section 3.2, we present an inference system that can also be seen as an
algorithm that computes the solution set of a matching problem.

5

2 Higher-order syntax

In this section, we formally define higher-order abstract syntax, a general setting in which we
can study higher-order unification problems. We define higher-order terms as a special class of
simply typed λ-terms, the class of long normal form terms, also called β-short η-long terms.

2.1 Mathematical prolegomena

Definition 2.1.1 (Valuations). Let V be a set. A V -valuation is a pair f = (dom(f), f) where
dom(f) is a finite set and f is a (total) map from dom(f) to V . Let A be a set. An (A, V)-
valuation f is a valuation satisfying dom(f) ⊆ A.

Given a V -valuation f and x ∈ dom(f), we write f(x) for f(x). For an (A, V)-valuation f ,
x ∈ A and v ∈ V , we define:

f, x 7→ v := (dom(f) ∪ {x}, f ′),

where f ′ : dom(f)∪{x} → V maps every y ∈ dom(f)\{x} to f(y) and x to v. We sometimes
write x ∈ f instead of x ∈ dom(f). We also define

f − x := (dom(f)\{x}, f |dom(f)\{x}).

For two (A, V)-valuations f and g, we say that f ⊆ g if dom(f) ⊆ dom(g) and for all
x ∈ dom(f), f(x) = g(x).

Definition 2.1.2. We equip ourselves with a countably infinite set A of variables.

2.2 Signatures

We start by defining simple types over a set and valuations.

Definition 2.2.1 (Simple types). Let T be a set. The set T→ of (simple) types over T is defined
by the following grammar.

T→ 3 τ, υ ::= A ∈ T | τ → υ

We abbreviate the type τ1 → (τ2 → (. . . (τn → A)) . . .) as τ1 × . . .× τn → A.
We define the order o of a type in T→ by induction.

o(A) = 0

o(τ → υ) = max(o(τ) + 1, υ)

We extend this definition to any T→-valuation Γ by setting

o(Γ) := maxx∈dom(Γ) o(Γ(x)).

Definition 2.2.2 (Higher-order signature). A higher-order signature is a couple Σ = (TΣ,OpΣ)
where TΣ is a set of primitive types, and OpΣ is a T→

Σ -valuation of operators. We write |Σ| for
dom(OpΣ), and call the elements of this set operator symbols.

We assume that for any signature Σ under consideration, the sets |Σ| and A are disjoint.

6

2.3 The λ-terms

We fix a higher-order signature Σ for the remaining of this section.

Definition 2.3.1 (Untyped λ-terms). We define the set Λu
Σ of untyped λ-terms over Σ by the

following rules.

Λu
Σ 3 t, u ::= λ-terms over Σ

| x variable (x ∈ A)
| F constant symbol (F ∈ |Σ|)
| (t)u application
| λx.t abstraction

We abbreviate, when convenient, λx1. . . . λxn.t byλx1 . . . xn.t and ((. . . (((t1)t2)t3) . . .)tn−1)tn
by t1 . . . tn or t1(t2, . . . , tn). We always consider terms up to a renaming of their bound variables,
and abide by the Barendregt convention.

Definition 2.3.2 (Typing contexts). A typing context, denoted Γ or ∆, is a (A, T→
Σ)-valuation.

Definition 2.3.3 (Typed λ-terms). We define the typing judgment Γ ` t : τ inductively by
the following system of inference rules.

x ∈ Γ

Γ ` x : Γ(x)

F ∈ |Σ|
Γ ` F : OpΣ(F)

Γ ` t : τ → υ Γ ` u : τ

Γ ` (t)u : υ

Γ, x : τ ` t : υ

Γ ` λx.t : τ → υ

We define the set of typed λ-terms for Σ by

ΛΣ := {t ∈ Λu
Σ | ∃Γ, ∃τ, Γ ` t : τ}.

And we overload the notation with

ΛΣ(Γ) := {t ∈ Λu
Σ | ∃τ, Γ ` t : τ} and

ΛΣ(Γ, τ) := {t ∈ Λu
Σ | Γ ` t : τ}.

Definition 2.3.4 (Free variables). Let t ∈ Λu
Σ. We define the set FV(t) of free variables of the

term t by induction.

FV(x) = {x} (x ∈ A)
FV(F) = ∅ (F ∈ |Σ|)

FV((t)u) = FV(t) ∪ FV(u)

FV(λx.t) = FV(t)\{x}

7

Definition 2.3.5 (Simple substitution). We define a simple substitution as an (A,Λu
Σ)-valuation.

We use the symbols σ and θ for substitutions. For x ∈ A, we define σ.x as follows.

σ.x :=

{
σ(x) if x ∈ dom(σ)

x otherwise

We denote the set of simple subtitutions over Σ by Su
Σ, and the unique substitution with an

empty domain by id. For σ ∈ Su
Σ, we define

FV(σ) :=
⋃
x∈σ

FV(σ(x))

We say that σ is closed if FV(σ) = ∅.

Definition 2.3.6 (Applying a substitution). Let σ ∈ Su
Σ. We define −[σ] : Λu

Σ → Λu
Σ by

induction.

x[σ] = σ.x

F [σ] = F

(t)u[σ] = (t[σ])u[σ]

λx.t[σ] = λy.t[σ, x : y] where y does not appear in t nor in σ

Definition 2.3.7 (Well-typed substitution). We define the set of well typed substitutions with
respect to an output context ∆ and an input context Γ as follows.

SΣ(∆,Γ) := {σ ∈ Su
Σ | ∀x ∈ A, ∆ ` σ.x : Γ(x)}

Lemma 2.3.8 (Relation between free variables and typing contexts). If Γ ` t : τ , then FV(t) ⊆
dom(Γ). And if σ ∈ SΣ(∆,Γ), then FV(σ) ⊆ dom(∆).

Proof. Straightforward by induction on the typing judgement.

Proposition 2.3.9. Let t ∈ ΛΣ(∆, τ) and σ ∈ SΣ(∆,Γ). We have Γ ` t[σ] : τ .
In other words, we have

−[=] : ΛΣ(Γ, τ)× SΣ(∆,Γ) → ΛΣ(∆, τ)

for all τ ∈ T→
Σ and all contexts Γ and∆.

Proof. This is shown by a routine induction on the term t. A detailed proof can be found in
many works treating λ-calculus, see for example the lemma 12.18 in the book of Hindley and
Seldin (1986).

Definition 2.3.10 (Composing substitutions). Let σ1, σ2 ∈ SΣ. We define

σ2 ◦ σ1 := (dom(σ1) ∪ dom(σ2), x 7→ (σ1.x)[σ2])

Proposition 2.3.11. Let σ1, σ2 ∈ SΣ and t ∈ Λu
Σ. We have t[σ2 ◦ σ1] = t[σ1][σ2]

8

Proof. The proof for this proposition is not trivial, and can be found in detail in the book of
Krivine (1993)

Proposition 2.3.12. Let σ1 ∈ SΣ(∆,Γ) and σ2 ∈ SΣ(Θ,∆). We have σ2 ◦σ1 ∈ SΣ(Θ, (∆,Γ))

Proof. Straightforward by induction on the term t.

2.4 The λ-calculus

Definition 2.4.1 (One-hole context). We define the set CΣ of one-hole contexts by induction.

CΣ 3 K ::= one-hole contexts over Σ
| � empty context
| (t)K | (K)t application (t ∈ Λu

Σ)

| λx.K abstraction

We use the same notations that we introduced for λ-terms, and we define by induction the
operation C[t] of filling a context C with a term t and a judgment (� : ∆ ` τ) | Γ ` K : υ

for well typed one-hole contexts as follows.

�[t] = t

(t)K[u] = (t)K[u]

(K)t[u] = (K[u])t

λx.K = λx.K[u]

(� : Γ ` υ) | Γ ` � : υ

(� : ∆ ` υ) | Γ, x : τ1 ` K : τ2

(� : ∆ ` υ) | Γ ` λx.K : τ1 → τ2

Γ ` t : τ1 → τ2 (� : ∆ ` υ) | Γ ` K : τ1

(� : ∆ ` υ) | Γ ` (t)K : τ2

(� : ∆ ` υ) | Γ ` K : τ1 → τ2 Γ ` t : τ1

(� : ∆ ` υ) | Γ ` (K)t : τ2

As for terms and substitutions, we denote the set of one-hole contexts that are of type τ given a
context Γ and a hole of type υ having access to an additional context ∆ by CΣ(Γ, τ,∆, υ).

Lemma 2.4.2. The following rule is admissible.

(� : ∆ ` υ) | Γ ` E : τ Γ,∆ ` t : υ

Γ ` E[t] : τ

Proof. Straightforward by induction on the derivation of the one-hole context typing judgment.

9

Definition 2.4.3 (βη reduction). We define the set of atomic β-reductions and atomic η-
reductions as follows.

 β := {((λx.t)u, t[x := u]) | t, u ∈ Λu
Σ}

 η := {(λx.(t)x, t) | t ∈ Λu
Σ}

We then define the contextual closure of these two atomic relations under one-hole contexts in
the following way.

→β := {(E[t], E[t′]) | t β t′, E ∈ CΣ}
→η := {(E[t], E[t′] | t η t′, E ∈ CΣ}

Finally, we define →βη := →β ∪ →η and for r ∈ {β, η, βη}, we define the relation →∗
r as

the reflexive-transitive closure of →r and the relation ≡r as the symmetric, reflexive, transitive
closure of →r. For any two terms t and u, we say that they are r-equivalent when we have
t ≡r u, and we say that t r-reduces to u (or that u is an r-reduct of t) when we have t →∗

r u.
We say that a term t is r-normal if t has no r-reduct.

Theorem 2.4.4 (Subject reduction). If Γ ` t : τ and t →βη u, then Γ ` u : τ

Proof. We start by showing that β and η are compatible with the type system using theo-
rem 2.3.9. We then get the result by applying theorem 2.4.2.

Theorem 2.4.5 (βη-normal form). βη-reduction is confluent and strongly normalizable for typed
terms. This means that for every well-typed term t ∈ ΛΣ, there exists a unique term Nf(t) such
that t →∗

βη Nf(t) and Nf(t) is βη-normal.

Proof. By combining theorems 12.35, 7.14 and 7.16 of the book of Hindley and Seldin (1986).

Definition 2.4.6. We define the set Λn
Σ of normal terms by

Λn
Σ := {Nf(t) | t ∈ ΛΣ}

2.5 Higher-order syntax terms

Proposition 2.5.1. Let t ∈ Λn
Σ(Γ, τ).

1. There exist unique n,m ≥ 0 and x1, . . . , xn ∈ A and u1, . . . , uk ∈ Λn
Σ and a ∈ Σ ∪ A

such that
t = λx1 . . . xn.a(u1, . . . , uk).

2. τ is in the form τ1 → . . . → τn → υ for some τ1, . . . , τn, υ ∈ T→
Σ .

Proof. The uniqueness is obtained by inverting the rules for constructing terms in addition to
reasoning modulo renaming of bound variables. To prove existence, we start by observing that
by an immediate induction, we get t = λx1 . . . xn.u(u1, . . . , uk) for some u ∈ Λu

Σ that is not in
the form (·)·. If for some i ∈ {1, . . . k} and u′ ∈ ΛΣ we have ui →∗

βη u′, then we would have
t →∗

βη λx1 . . . xn.u(u1, . . . , ui−1, u
′, ui+1, . . . , uk) which is not possible since t is βη-normal

10

; therefore ∀i ∈ {1, . . . , k}, ui ∈ Λn
Σ. To conclude, we only have to show that u is not in the

form λx.u′. It can’t be in this form because otherwise t would admit the atomic β-reduction
u β u′[x := u1].
We prove the second point by inverting n times the typing judgment for t.

Definition 2.5.2 (Long normal form). Let t = λx1 . . . xn.a(u1, . . . , uk) ∈ Λn
Σ(Γ, τ), and

τ1 → . . . → τm → A := τ . By theorem 2.5.1, m ≥ n. We define the long normal form of t
with respect to Γ and τ , denoted NΓ,τ (t), by

NΓ,τ (t) := λx1 . . . xnxn+1 . . . xm.a(NΓ,τ (u1), . . . ,NΓ,τ (uk), xn+1, . . . , xm),

where xn+1, . . . , xm are not free in t and different from x1, . . . , xn.
For t ∈ ΛΣ(Γ, τ), we define

NΓ,τ (t) := NΓ,τ (Nf(t))

In this form, we call (x1, . . . , xm) the binder of t, and we call a the head of t.

Definition 2.5.3 (Higher-order syntax terms). We define the set TΣ of higher-order terms over
Σ by

TΣ :=
∏
Γ,τ

{NΓ,τ (t) | t ∈ ΛΣ(Γ, τ)}

Proposition 2.5.4 (Inductive definition of higher-order terms). The set TΣ of higher-order terms
over Σ is charactarized by the judgement Σ | Γ `n t : τ which is defined as follows.

Σ | Γ, x : τ `n t : υ

Σ | Γ `n λx.t : τ → υ

Σ ∪ Γ 3 a : τ1 → . . . → τn → A (Σ | Γ `n ui : τi)1≤i≤n

Σ | Γ `n a(u1, . . . , un) : A

Proof. Result of theorem 2.5.1.

Definition 2.5.5 (Structural order). We define � : TΣ × TΣ as the order induced by the
inductive structure of higher-order terms.

Definition 2.5.6 (Normal substitution). Let σ ∈ SΣ(∆,Γ). We say that σ is normal if for all
x ∈ dom(σ), we have σ(x) ∈ TΣ(Γ,∆(x)). We denote

Sn
Σ(∆,Γ) := {σ ∈ SΣ(∆,Γ) | σ is normal }

Definition 2.5.7 (Action of a normal substitution). Let σ ∈ Sn
Σ(∆,Γ) and t ∈ TΣ(∆, τ). We

define the action of σ on t, denoted t[σ]h, as the long normal form of t[σ].

t[σ]h := NΓ,τ (t[σ])

The notation [−]h for the normal form of a substitution is justified by the following proposi-
tion, which describes hereditary substitution, an algorithm for substitution that ensures normal-
ization of the resulting term on the fly.

11

Proposition 2.5.8 (definition of the action of a normal substitution). The action of a normal
substitution is characterized by the following recursive definition.

λx.t[σ]h = λy.t[σ, x := y]h (y fresh in t and σ)

a(u1, . . . , un)[σ]h = t[σ, x1 := u1, . . . , xn := un]h when σ(a) = λx1 . . . xn.t

a(u1, . . . , un)[σ]h = a(u1[σ]h, . . . , un[σ]h) when a /∈ dom(σ)

Proof. See the article of Keller and Altenkirch (2011).

3 Matching problem

3.1 The problem

We start by presenting the matching problem, and exhibiting the structure of its solutions, and
defining a notion of canonical solution that can be precisely described.

Definition 3.1.1 (Matching). Let t1 ∈ TΣ(Γ, τ) and t2 ∈ TΣ(∅, τ). We say that t2 matches t1 if
there exists Γ′ ⊆ Γ and σ ∈ Sn

Σ(∅,Γ′) such that t1[σ]h = t2. In that case we write t1 ≤τ t2 and
say that σ is a filter for the pair (t1, t2).

Definition 3.1.2 (Matching problem). A matching problem is a pair P = (Γ, |P |) where Γ is a
context and |P | is a finite set of triplets (t, u, τ) such that Γ ` t : τ and · ` u : τ . We denote
each (t, u, τ) ∈ |P | as t ≤τ

? u.
A substitution σ ∈ SΣ is a filter for the problem P if it is a filter for each pair in |P |.

Definition 3.1.3 (Substitution preorder). Let σ1, σ2 ∈ SΣ. We write that σ1 is more general
than σ2 if there exists θ ∈ SΣ such that σ2 = θ ◦ σ1. In that case, we write σ1 ≤ σ2.

Proposition 3.1.4. The relation ≤ is a preorder for the set SΣ. We denote JσK the equivalence
class of a substitution σ with respect to the equivalence relation induced by ≤.

Proof. Using theorem 2.3.11, we have that substitution composition is associative and admits id
as a neutral element. We therefore respectively get that ≤ is transitive and reflexive.

Proposition 3.1.5 (Triangular-form for closed substitutions). Let σ ∈ SΣ(∅,Γ) with dom(σ) =
{x1, . . . , xn}. We have

σ = {x1 7→ σ(x1)} ◦ . . . ◦ {xn 7→ σ(xn)}.

Proof. This is a direct consequence of the definition of composition combined with the fact that
for any closed term t ∈ Λu

Σ and any substitution σ ∈ SΣ, t[σ] = t.

Definition 3.1.6. Let P be a matching problem. We denote by F(P) the set of all filters for P .
We say that a set S ⊆ F(P) is:

1. complete if for all filters σ ∈ F(P), there exists a filter σ′ ∈ S such that σ′ ≤ σ;

2. minimal if for all distinct pairs of filters σ1, σ2 ∈ S, we have σ1 � σ2.

12

Definition 3.1.7 (Solution to a matching problem). A solution to a matching problem P is a set
S ⊆ F(P) that is complete and minimal.

Proposition 3.1.8. Let P be a matching problem with two solutions S1, S2. We have JS1K = JS2K.

Proof. Since S1 and S2 have symmetrical roles, it is sufficient to prove thatJS1K ⊆ JS2K. Let
σ1 ∈ S1. Since S2 is complete, there exists σ2 ∈ S2 such that σ2 ≤ σ1. Since S1 is complete
there exists σ′

1 ∈ S1, σ′
1. By transitivity we get σ1 ≤ σ′

1, but S1 is minimal, so σ1 = σ′
1. Finally,

we have σ1 ≤ σ2 ≤ σ1, therefore Jσ1K = Jσ2K.

Definition 3.1.9 (Canonical filter). Let t ∈ TΣ(Γ, τ), u ∈ TΣ(∅, τ) and σ a filter for the pair
(t, u). For each x ∈ dom(σ), we say that x is (t, u, σ)-essential if

t[σ − x]h 6= u.

Given a matching problem P and a filter σ for P , σ is canonical with respect to P if

∀x ∈ dom(σ), ∃t ≤τ
? u ∈ |P |, x is (t, u, σ)-essential

Proposition 3.1.10 (Canonical filter map). Let P be a matching problem. For every filter σ for P ,
there exists a unique canonical filter, which we denote cP (σ), such that cP (σ) ≤ σ. Additionally,
cP (σ) ⊆ σ.

Proof. We proceed by well-founded induction on the length of dom(σ). We reason by cases on
the canonicity of σ.

• If σ is already canonical, we only have to prove uniqueness. Let σ′ be a canonical filter
such that σ′ ≤ σ. By definition, there exists θ ∈ SΣ such that σ = θ ◦ σ′. Note that
since σ and σ′ are closed, for all x ∈ dom(σ), either x ∈ dom(σ′) and σ(x) = σ′(x),
or x ∈ dom(θ)\dom(σ′) and σ(x) = θ(x). We reason by cases.

– If the set dom(θ)\dom(σ′) is empty, we must have σ′ = σ, concluding the proof.

– Otherwise, let x ∈ dom(θ)\dom(σ′). Using theorem 2.3.11, we have, for all t ≤τ
?

u ∈ |P |:

t[σ − x]h = t[(θ − x) ◦ σ′]h = t[σ′]h[θ − x]h = u[θ − x]h = u

hence x is not (t, u, σ)-essential, which is contradictory because σ is canonical.

• Otherwise, there exists x ∈ dom(σ) such that for all t ≤τ
? u ∈ |P |, t[σ − x]h = u. We

set σ′ := σ− x. By induction hypothesis, there exists a canonical filter cP (σ′) for P such
that cP (σ′) ≤ σ′. Using theorem 3.1.5, we have σ = {x 7→ σ(x)} ◦ σ′, so σ ≤ σ′ and
by transitivity cP (σ′) ≤ σ. We set cP (σ) := cP (σ′). By induction hypothesis, we have
cP (σ′) ⊆ σ′ ; and by definition of σ′, we have σ′ ⊆ σ. Therefore cP (σ) = cP (σ′) ⊆ σ.
We finally show that there is no other canonical filter by using the same reasoning as the
first step of this proof.

13

Corollary 3.1.11 (Existence of a canonical solution). Let P be a matching problem. The set

FC(P) := {c(σ) | σ ∈ F(P)}

of canonical filters for P is a solution to the problem FC(P).

Proof. By theorem 3.1.10, FC(P) is complete and minimal.

3.2 Matching algorithm

Starting here, we restrict ourselves to a signature Σ of the second order and to contexts Γ of
the first order.

Definition 3.2.1 (Second-order matching algorithm). We define the judgement

Γ | ∆ ` t ≤τ
? u a σ

by the inductive system of rules that follows.

Introduce
Γ | ∆, x : A ` t ≤A

? u a σ

Γ | ∆ ` λx.t ≤τ→A
? λx.u a σ

Simplify
Σ ∪∆ 3 a : τ1 × . . . τn → A (Γ | ∆ ` ti[σi−1 ◦ . . . ◦ σ1]h ≤τi

? ui a σi)1≤i≤n

Γ | ∆ ` a(t1, . . . , tn) ≤A
? a(u1, . . . , un) a σn ◦ . . . ◦ σ1

Project
1 ≤ i ≤ n Γ | ∆ ` f(t1, . . . , tn)[f 7→ λx1 . . . xn.xi]h ≤τ

? u a σ

Γ, f : τ1 × . . .× τn → A | ∆ ` f(t1, . . . , tn) ≤A
? u a σ ◦ {f 7→ λx1 . . . xn.xi}

Imitate

(υi =: υ1i × . . .× υkii → Bi)1≤i≤n

θ := {f 7→ λx1 . . . xn.F (
−−−−−−−−−−−−−−−−−−−−−−−−−−−→
λy1, . . . , yki .fi(x1, . . . , xn, y1, . . . , yki))}

Σ 3 F : υ1 × . . .× υm → B

Γ, f1 : _, . . . , fm : _ | ∆ ` f(t1, . . . , tn)[θ]h ≤A
? F (u1, . . . , um) a σ

Γ, f : τ1 × . . .× τn → A | ∆ ` f(t1, . . . , tn) ≤A
? F (u1, . . . , um) a (σ ◦ θ)− f1, . . . , fm

If we can derive the judgementΓ | ∆ ` t ≤τ
? u a σ, we claim that σ is a canonical substitution

for the problem t ≤τ
? u under the context Γ and with bound variables in ∆.

We only consider judgements where we have∆∪Γ = ∅. This can always be ensured because
the only rule extending ∆ is the Introduce rule, which enriches ∆ with a bound variable,
therefore we can always rename the bound variable to be disjoint from the domain of Γ.

Definition 3.2.2. Let t ∈ TΣ((Γ,∆), τ) and u ∈ TΣ(∆, τ). We say that a substitution σ ∈
SΣ(∅,Γ) is is ∆-canonical with respect to the problem {t ≤τ

? u} if for every enumeration
x1, . . . xn of dom(∆), σ is canonical with respect to

λx1 . . . xn.t ≤∆(x1)×···×∆(xn)→τ
? λx1 . . . xn.u.

14

It is clear that σ is a canonical filter (in the sense of theorem 3.1.9) with respect to {t ≤τ
? u}

if and only if it is ∅-canonical with respect to the same problem.

Theorem 3.2.3 (Soundness). If Γ | ∆ ` t ≤τ
? u a σ, then σ is a ∆-canonical filter with respect

to the problem {t ≤τ
? u}.

Proof. We prove it by induction on the derivation of the judgement.

• Case
Γ | ∆, x : A ` t′ ≤A

? u′ a σ

Γ | ∆ ` λx.t′ ≤τ ′→A
? λx.u′ a σ

: by the Barendregt variable convention, we may

assume that x is fresh enough, so that

(λx.t′)[σ]h = λx.t′[σ, x 7→ x]h = λx.t′[σ]h.

By induction hypothesis, t′[σ]h = u′, so

t = (λx.t′)[σ]h = λx.u′ = u.

And for y ∈ dom(σ), by induction hypothesis, t′[σ − y]h 6= u′. Therefore we have

t[σ − y]h = λx.t′[σ − y]h 6= λx.u′ = u.

So σ is a ∆-canonical filter with respect to t ≤τ
? u.

• Case
Σ ∪∆ 3 a : τ1 × . . . τn → A (Γ | ∆ ` ti[σi−1 ◦ . . . ◦ σ1]h ≤τi

? ui a σi)1≤i≤n

Γ | ∆ ` a(t1, . . . , tn) ≤A
? a(u1, . . . , un) a σn ◦ . . . ◦ σ1

:

We show that σ is a filter for the pair (t ≤τ
? u):

t[σ]h = a(t1, . . . , tn)[σn ◦ . . . ◦ σ1]h
= a(t1[σn ◦ . . . ◦ σ1]h, . . . , tn[σn ◦ . . . ◦ σ1]h)
= a(t1[σ1]h[σn ◦ . . . ◦ σ2]h, t2[σ2 ◦ σ1]h[σn ◦ . . . ◦ σ3]h, . . . , tn[σn ◦ . . . ◦ σ1]h) theorem 2.3.11
= a(u1[σn ◦ . . . ◦ σ2]h, u2[σn ◦ . . . ◦ σ3]h, . . . , un) by IH
= a(u1, . . . , un). (ui)i are closed

In order to prove that σ is ∆-canonical, we need to show that the (σi)1≤i≤n have disjoint
domains. Let i ∈ {2, . . . , n}. By induction hypothesis, σi is ∆-canonical for the problem
ti[σi−1 ◦ . . . ◦ σ1]h ≤τ

? ui, therefore for any x ∈ dom(σi), x is free in ti[σi−1 ◦ . . . ◦ σ1]h
and in particular, since σ1, . . . , σi−1 are closed, σi−1 ◦ . . . ◦ σ1 is also closed and x must
not be defined in it. In other words, x /∈ dom(σi−1 ◦ . . . ◦ σ1) = dom(σ1 ∪ . . . ∪ σn).
We now show that σ is ∆-canonical. Suppose by contradiction that there exists x ∈ σ
such that t[σ − x]h = u. We then have for any i ∈ {1, . . . , n}, ti[σ − x]h = ui. Since the
(σi)1≤i≤n have disjoint domains, there exists i ∈ {1 ≤ i ≤ n} such that x ∈ σi

σ − x = σn ◦ . . . ◦ (σi − x) ◦ . . . ◦ σ1.

15

By induction hypothesis, ti[σi ◦ . . . ◦ σ1]h is closed so the only possible free variable in
ti[(σi − x) ◦ . . . ◦ σ1]h is x and since for any j 6= i, x /∈ σj we have:

ui = ti[σn ◦ . . . ◦ (σi − x) ◦ . . . σ1]h
= ti[(σi − x) ◦ . . . ◦ σ1]h[σn ◦ . . . ◦ σi+1]h theorem 2.3.11
= ti[(σi − x) ◦ . . . ◦ σ1]h (x /∈ σj)j>i et FV(t) ⊆ {x}
= ti[σi−1 ◦ . . . ◦ σ1]h[σi − x]h theorem 2.3.11

So σi is not ∆-canonical for ti[σi−1 ◦ . . . ◦ σ1]h ≤τ
? ui, which contradicts the induction

hypothesis.

• Case
1 ≤ i ≤ n Γ | ∆ ` f(t1, . . . , tn)[f 7→ λx1 . . . xn.xi]h ≤τ

? u a σ′

Γ, f : τ1 × . . .× τn → A | ∆ ` f(t1, . . . , tn) ≤A
? u a σ′ ◦ {f 7→ λx1 . . . xn.xi}

:

The fact that σ is a filter is straightforward:

t[σ]h = f(t1, . . . , tn)[σ
′ ◦ {f 7→ λx1 . . . xn.xi]h

= f(t1, . . . , tn)[f 7→ λx1 . . . xn.xi]h[σ
′]h theorem 2.3.11

= u induction hypothesis

f is trivially (t, u, σ)-essential:

t[σ − f]h = f(t1, . . . , tn)[σ − f]h = f(t1[σ − f]h, . . . , tn[σ − f]h) 6= u,

so we only have to show that all x ∈ σ′ are (t, u, σ)-essential. Let x ∈ σ′. By hypothesis,
σ′ is ∆-canonical for a term that does not have f as a free variable so x 6= f , therefore
we have:

t[σ − x]h = f(t1, . . . , tn)[(σ
′ − x) ◦ {f 7→ λx1 . . . xn.xi}]h

= f(t1, . . . , tn)[f 7→ λx1 . . . xn.xi]h[σ
′ − x]h theorem 2.3.11

6= u induction hypothesis

• Case

. . .

Γ, f1 : _, . . . , fm : _ | ∆ ` f(t1, . . . , tn)[θ]h ≤A
? F (u1, . . . , um) a σ

Γ, f : τ1 × . . .× τn → A | ∆ ` f(t1, . . . , tn) ≤A
? F (u1, . . . , um) a (σ ◦ θ)− fi

: the

proof for this case is analogous to that of the Project case, with the straightforward
additional step showing that the (fi)i are (and are the only) non-(t, u, σ ◦ θ-essential
variables.

3.3 Completeness

Lemma 3.3.1. Let σ1 ∈ SΣ(∅,Γ1) and σ2 ∈ SΣ(∅,Γ2). If σ2 ⊆ σ1, then

σ2 ◦ σ1 = σ1 ◦ σ2 = σ1.

16

Proof. By definition of substitution composition, we have

dom(σ2 ◦ σ1) = dom(σ1 ◦ σ2) = dom(σ2) ∪ dom(σ1) = dom(σ1).

And for x ∈ dom(σ1),

(σ2 ◦ σ1)(x) = (σ1.x)[σ2]h = σ1(x)[σ2]h = σ1(x)

where the last step equality follows from σ1(x) being close, and

(σ1 ◦ σ2)(x) = (σ2.x)[σ1]h =

{
σ2(x)[σ1]h = σ2(x) = σ1(x) if x ∈ σ2 (because σ2 ⊆ σ1)

x[σ1]h = σ1(x) otherwise.

Theorem 3.3.2 (Completeness). Let t ∈ TΣ((Γ,∆), τ), u ∈ TΣ(∆, τ) and σ ∈ SΣ(∅,Γ). If σ is
a ∆-canonical filter with respect to {t ≤τ

? u}, then we have Γ | ∆ ` t ≤τ
? u a σ

Proof. We prove it by well-founded induction on the pair (u, t) using the lexicographic order
≺ ×L ≺ of the structural order ≺ on higher-order terms. We reason by cases on the form of t.

• Case t = λx.t′: Assuming, without loss of generality, that x is fresh enough, we have

u = t[σ]h = (λx.t′)[σ]h = λx.t′[σ]h.

And for y ∈ σ, since σ is ∆-canonical we have

t[σ]h 6= t[σ − y]h

= λx.t′[σ − y]h.

By combining the two equations above, we get λx.t′[σ]h 6= λx.t′[σ − y]h. Which im-
plies that t′[σ]h 6= t′[σ − y]h. By inverting the typing judgement for t, we have that
Γ,∆x : τ1 ` t′ : τ2 and τ = τ1 → τ2 for some τ1, τ2 ∈ T→

Σ . Therefore, σ is (∆, x : τ1)-
canonical with respect to the problem t′ ≤τ2

? t′[σ]h. Since u = λx.t′[σ]h, we have
(t′, t′[σ]h) ≺ ×L ≺ (t, u) ; by induction hypothesis, we have Γ | ∆, x : τ1 ` t′ ≤τ2

?

t′[σ]h a σ, and can therefore apply the rule Introduce in conjunction with the hypothe-
sis that (λx.t′)[σ]h = u.

Γ | ∆, x : τ1 ` t′ ≤τ2
? t′[σ]h a σ

Γ | ∆ ` λx.t′ ≤τ1→τ2
? u a σ

• Case t = a(t1, . . . , tn) with Σ ∪∆ 3 a : τ1 × . . .× τn → A: we have τ = A and

u = t[σ]h = a(t1[σ]h, . . . , tn[σ]h).

We denote (ui := ti[σ]h)1≤i≤n and we define substitutions (σi)1≤i≤n by induction.

σ1 = ct1≤τ1
? u1

(σ)

σi+1 = c
ti+1[σi◦...◦σ1]h≤

τi+1
? ui+1

(σ) 1 ≤ i < n

These substitutions are well-defined: we show by induction that for all i ∈ {1, . . . , n},
σi ⊆ σ and σ is a filter for ti[σi−1 ◦ . . . ◦ σ1]h ≤τi

? ui.

17

– Case 0: by hypothesis, σ is a filter for t1 ≤τ1
? u1, and by a combination of the

definition of ct1≤τ1
? u1

and theorem 3.1.10, σ1 ⊆ σ.

– Case i+ 1: By induction hypothesis,

dom(σi ◦ . . . ◦ σ1) = dom(σi) ∪ . . . ∪ dom(σ1) ⊆ dom(σ).

Which allows us to have

ti+1[σi ◦ . . . ◦ σ1]h[σ]h = ti+1[(σi ◦ . . . ◦ σ1) ◦ σ]h theorem 2.3.11
= ti+1[σ]h theorem 3.3.1
= ui+1.

σ is therefore a filter, making σi+1 well-defined ; and by theorem 3.1.10 and by
definition of σi+1, σi+1 ⊆ σ.

Therefore, for all i ∈ {1, . . . , n}, by definition of σi,

σi is a ∆-canonical filter for ti[σi−1 ◦ . . . ◦ σ1]h ≤τi
? ui.

For all i ∈ {1, . . . , n}, ui ≺ u so (ui, ti[. . .]) ≺ ×L ≺ (u, t) ; by induction hypothesis,
we get

(Γ | ∆ ` ti[σi−1 ◦ . . . ◦ σ1]h ≤τi
? ui a σi)1≤i≤n.

This allows us to apply the Simplify rule and obtain

Γ | ∆ ` a(t1, . . . , tn) ≤A
? a(u1, . . . , un) a σn ◦ . . . ◦ σ1.

Since t = a(t1, . . . , tn) and u = a(u1, . . . , un), all we need to do is to show that σ =
σn ◦ . . . ◦ σ1. Using the soundness theorem, we have that σn ◦ . . . ◦ σ1 is ∆-canonical for
the problem. But by hypothesis, σ is also ∆-canonical. By theorem 3.1.10, the two are
equal.

• Case t = f(t1, . . . , tn) with Γ 3 f : τ1 × . . . × τn → A: in that case, τ = A. Let
a(u1, . . . , um) be the form of u, and υ1 × . . . × υm → A be the type of a. Since u ∈
TΣ(∆, A)whereA is a primitive type, its binder is empty and its head a is either a function
symbol in Σ or a variable in ∆. Since the variable f is the head of t, it is necessarily
(t, u, σ)-essential, therefore by theorem 3.1.5 there exists some σ′ such that f /∈ σ′ and

σ = σ′ ◦ {f 7→ σ(f)}.

There exist (xi)1≤i≤n ∈ An, r ≥ 0, (κi)1≤i≤r ∈ T→
Σ , (vi ∈ TΣ(∆′, κi))1≤i≤r and

Σ ∪∆′ 3 b : κ1 × . . .× κr → A such that

σ(f) = λx1 . . . xn.b(v1, . . . , vr),

where ∆′ := (x1 : τ1, . . . , xn : τn). Without loss of generality, we may assume that the
(xi)i do not appear in Γ or ∆.

18

We have

a(u1, . . . , un) = u

= t[σ]h

= f(t1, . . . , tn)[σ
′ ◦ (f 7→ σ(f))]h

= f(t1, . . . , tn)[f 7→ λx1, . . . , xn.b(v1, . . . , vr)]h[σ
′]h

= b(v1, . . . , vr)[σ
′, x1 7→ t1[σ]h, . . . , xn 7→ tn[σ]h]h.

Let’s abbreviate (σ′, (xi 7→ ti[σ]h)1≤i≤n) as σ′′. We separate two cases based on the
nature of b.

1. If b ∈ ∆′ (i.e. there exists 1 ≤ i ≤ n such that b = xi), we necessarily have r = 0
since f is of order 1. We get in that case

u = b(v1, . . . , vn)[σ
′′]h = xi[σ

′′]h = ti[σ]h,

therefore σ′ is a filter for the problem ti ≤τi
? ui. It is also ∆-canonical because if

we had some y ∈ σ′ such that u = ti[σ
′ − y]h, we would also have u = t[σ − y]h

which contradicts the fact that σ is ∆-canonical for t ≤τ
? u. We have ti ≺ t so

(ti, u) ≺ ×L ≺ (t, u), we can therefore apply our induction hypothesis to obtain

Γ | ∆ ` ti ≤A
? u a σ′.

Since ti = f(t1, . . . , tn)[f 7→ λx1 . . . xn.xi]h, we can apply the Project rule to get

Γ | ∆ ` t ≤A
? u a σ′ ◦ (f 7→ λx1 . . . xn.xi)

2. Otherwise, b ∈ Σ. We write F instead of b to emphasize on the fact that it is an
operator symbol. In that case:

a(u1, . . . , un) = F (v1, . . . , vn)[σ
′′]h = F (v1[σ

′′]h, . . . , vr[σ
′′]h),

so a = F , r = m and (ui = vi[σ
′′]h)1≤i≤m. In addition to that, since the (vi)i only

have x1, . . . , xn as free variables, we have for all i ∈ {1, . . . ,m},

ui = vi[σ
′′]h = vi[σ, x1 7→ t1[σ], . . . , xn 7→ tn[σ]]h = vi[x1 7→ t1[σ], . . . , xn 7→ tn[σ]]h.

For each i ∈ {1, . . . , n}, we define a fresh variable fi ∈ A and its associated type:
υ′i := τ1 → . . . → τn → υi. Morally, we want each fi to imitate the term vi which
has access to the free variables x1, . . . , xn of respective types τ1, . . . , τn.
We set

Γ′ := (Γ− f), f1 : υ
′
1, . . . , fm : υ′m,

θ := f 7→ F (λx1 . . . xn.NΓ′,υ′
1
(f1(x1, . . . , xn)), . . . ,NΓ′,υ′

n
(fn(x1, . . . , xn))),

t′ := t[θ]h.

19

Weobserve that θ ∈ SΣ((Γ
′,∆), (Γ,∆)), so by theorem 2.4.4, we haveΓ′,∆ ` t′ : A

For i ∈ {1, . . . ,m}, we define

ρi := (fi 7→ λx1, . . . , xn.vi),

and
ρ := ρ1 ◦ . . . ◦ ρm

Let i ∈ {1, . . . ,m}, and let λz1i . . . z
ki
i .v′i be the long normal form of vi where

υ1i × . . .× υkii → B = υi for some types υ1i , . . . , υ
ki
i , B. We have

NΓ′,υi(fi(t1[θ]h, . . . , tn[θ]h))[σ
′ ◦ ρ]h

= (λz1i . . . z
ki
i .fi(t1[θ]h, . . . , tn[θ]h, z

1
i , . . . , z

ki
i))[σ′ ◦ ρ]h

= λz1i . . . z
ki
i .v′i[x1 7→ t1[ρ ◦ θ]h, . . . , xn 7→ tn[ρ ◦ θ]h, z1i 7→ z1i , . . . , z

ki
i 7→ zkii]h[σ

′]h

= λz1i . . . z
ki
i .v′i[x1 7→ t1[ρ ◦ θ]h, . . . , xn 7→ tn[ρ ◦ θ]h]h[σ′]h.

On the other hand,

ρ ◦ θ = ρ, f 7→ F (v1, . . . , vm)

= ρ, f 7→ σ(f).

So since FV(v′i) ∩ dom(σ′) = FV(ti) ∩ dom(ρ) = ∅ we get:

NΓ′,υi(fi(t1[θ]h, . . . , tn[θ]h))[σ
′ ◦ ρ]h

= λz1i . . . z
ki
i .v′i[σ

′, x1 7→ t1[(ρ, f 7→ θ(f)) ◦ σ′]h, . . . , xn 7→ tn[(ρ, f 7→ θ(f)) ◦ σ′]h]h

= λz1i . . . z
ki
i .v′i[σ

′, x1 7→ t1[ρ ◦ σ]h, . . . , xn 7→ tn[ρ ◦ σ]h]h
= λz1 . . . zk.v

′
i[x1 7→ t1[ρ ◦ σ]h, . . . , xn 7→ tn[ρ ◦ σ]h]h

= λz1i . . . z
ki
i .v′i[x1 7→ t1[σ]h, . . . , xn 7→ tn[σ]h]h

= ui.

Finally, if we denote for all i the term λz11 . . . z
ki
1 .fi(t1[θ]h, . . . , tn[θ]h) by f ′

i , we
have

t′[σ′ ◦ ρ]h = t[θ]h[σ
′ ◦ ρ]h

= F (f ′
1, . . . , f

′
m)[σ′ ◦ ρ]h

= F (f ′
1[σ

′ ◦ ρ]h, . . . , f ′
m[σ′ ◦ ρ]h)

= F (u1, . . . , um)

= u

Therefore, σ′ ◦ ρ is a filter for the problem t′ ≤A
? u. It is also ∆-canonical: all the

(fi)i are essential or else they remain free in t′. And for y ∈ σ′, if we assume by
contradiction that t′[(σ′ − y) ◦ ρ]h = u, we can redo the three calculations above
and show that t[σ − y]h = u which is absurd because σ is canonical for the pair

20

t ≤A
? u.

We have the canonical pair σ′ ◦ ρ for the problem t′ ≤A
? u. Since the left-hand

side is u itself, we can use the result of the second case of this proof , and arrive
immediately at

Γ′ | ∆ ` t′ ≤A
? u a σ′ ◦ ρ,

which can be rewritten as

(Γ− f), f1 : υ
′
1, . . . , fm : υ′m | ∆ ` t[θ]h ≤A

? u a σ′ ◦ ρ.

We can now apply the Imitate and we get

Γ | ∆ ` t ≤A
? u a ((σ′ ◦ ρ) ◦ θ)− f1, . . . , fm.

To conclude, let us simplify this substitution:

((σ′ ◦ ρ) ◦ θ)− f1, . . . , fm = (σ′ ◦ (ρ ◦ θ))− f1, . . . , fm

= (σ′ ◦ (ρ, f 7→ σ(f)))− f1, . . . , fm

= (σ ◦ ρ)− f1, . . . , fm

= (σ ◦ f1 7→ ρ(f1) ◦ . . . ◦ fm 7→ ρ(fm))− f1, . . . , fm

= σ

3.4 Implementation

Theorems 3.2.3 and 3.3.2 show that the inference system we defined completely covers the
problem of second-order unification. Here, we make the observation that this inference system
describes, in fact, an algorithm.

Given a judgement Γ | ∆ ` t ≤τ
? u a σ, we choose to see the five first arguments

(Γ,∆, t, τ, u) as the input, and σ as the output. With this dichotomy, we see that each one of the
four inference rules we defined has the property that the inputs of the premise can be trivially
computed using the inputs of the result, and the output of the result can be computed trivially
using the outputs of the premise. This, combined with the fact that for a given input tuple,
there are only finitely many applicable inference rules, means that we have a non-deterministic
algorithm that, assuming it terminates, gives us all canonical substitutions for a given problem,
hence the solution to that problem. Therefore, to be convinced that we have an algorithm that
computes the solution of any second-order matching problem, we only have to show that our
algorithm always terminates.

Lemma 3.4.1 (Termination). Let (Γ,∆, t, τ, u, σ), be the data of a judgement. There exists no
infinite sequence of upwards derivations using the inference rules defined in theorem 3.2.1 and
starting with Γ | ∆ ` t ≤τ

? u a σ.

Proof. We prove it by induction on the pair (u, t), using the lexicographic product ≺ ×L ≺ of
the structural order ≺ on higher-order terms. We proceed by cases on the derivation of the
judgement.

21

• Case
Γ | ∆, x : A ` t′ ≤A

? u′ a σ

Γ | ∆ ` λx.t′ ≤τ ′→A
? λx.u′ a σ

: by induction hypothesis, since u′ ≺ λx.u′ = u,

the judgement Γ | ∆, x : A ` t ≤A
? u′ a σ is derived in a finite number of steps.

• Case
Σ ∪∆ 3 a : τ1 × . . . τn → A (Γ | ∆ ` ti[σi−1 ◦ . . . ◦ σ1]h ≤τi

? ui a σi)1≤i≤n

Γ | ∆ ` a(t1, . . . , tn) ≤A
? a(u1, . . . , un) a σn ◦ . . . ◦ σ1

:

for all i ∈ {1, . . . }, by induction hypothesis, sinceui ≺ a(u1, . . . , un) = u, the judgement
Γ | ∆ ` ti[σi−1 ◦ . . . ◦ σ1]h ≤τi

? ui a σi is derived in a finite number of steps.

• Case
1 ≤ i ≤ n Γ | ∆ ` f(t1, . . . , tn)[f 7→ λx1 . . . xn.xi]h ≤τ

? u a σ′

Γ, f : τ1 × . . .× τn → A | ∆ ` f(t1, . . . , tn) ≤A
? u a σ′ ◦ {f 7→ λx1 . . . xn.xi}

: we

have
f(t1, . . . , tn)[f 7→ λx1 . . . xn.xi]h = ti. By induction hypothesis, since ti ≺ t, the judge-
ment Γ | ∆ ` ti ≤τ

? u a σ is derived in a finite number of steps.

• Case

. . .

Γ, f1 : _, . . . , fm : _ | ∆ ` f(t1, . . . , tn)[θ]h ≤A
? F (u1, . . . , um) a σ

Γ, f : τ1 × . . .× τn → A | ∆ ` f(t1, . . . , tn) ≤A
? F (u1, . . . , um) a (σ ◦ θ)− fi

: in

that case, we have

f(t1, . . . , tn)[θ]h = F (f1(. . .), . . . , fm(. . .)).

Since F is rigid, by inversion of the judgement

Γ | ∆ ` F (f1(. . .), . . . , fm(. . .)) ≤A
? F (u1, . . . , um) a σ,

the only applicable rule is the Simplify rule, which gets us to m judgements of the form

Γ | ∆ ` fi(. . .) ≤...
? ui a σ

which are all derived in a finite number of steps by induction hypothesis.

References

Dowek, Gilles (Dec. 2001). “Higher-Order Unification and Matching”. In: Handbook of Automated
Reasoning 2. doi: 10.1016/B978-044450813-3/50018-7.

Herbrand, Jacques (1930). Recherches sur la théorie de la démonstration. fre. url: http://
eudml.org/doc/192791.

Hindley, J. and Jonathan Seldin (Sept. 1986). Introduction to Combinators and Lambda-Calculus.
isbn: 9780511809835. doi: 10.1017/CBO9780511809835.

Huet, Gérard (Jan. 1976). “Résolution d’Équations dans des Langages d’ordre 1,2,…,ω.” PhD thesis.
url: https://gallium.inria.fr/~huet/PUBLIC/Huet1976.pdf.

Huet, Gérard and Bernard Lang (1978). “Proving and applying program transformations ex-
pressed with second-order patterns”. In: Acta Informatica 11.1. issn: 1432-0525. doi: 10.
1007/bf00264598. url: http://dx.doi.org/10.1007/bf00264598.

22

https://doi.org/10.1016/B978-044450813-3/50018-7
http://eudml.org/doc/192791
http://eudml.org/doc/192791
https://doi.org/10.1017/CBO9780511809835
https://gallium.inria.fr/~huet/PUBLIC/Huet1976.pdf
https://doi.org/10.1007/bf00264598
https://doi.org/10.1007/bf00264598
http://dx.doi.org/10.1007/bf00264598

Keller, Chantal andThorsten Altenkirch (May 2011). “Normalization by hereditary substitutions”.
In.

Krivine, J.L. (1993). Lambda-calculus, Types and Models. Computers and their applications. Ellis
Horwood. isbn: 9780130624079. url: https://books.google.fr/books?id=
brWEAAAAIAAJ.

Miller, Dale (1992). “Unification under a mixed prefix”. In: Journal of Symbolic Computation
14.4, pp. 321–358. issn: 0747-7171. url: https://www.sciencedirect.com/
science/article/pii/074771719290011R.

Robinson, J. A. (Jan. 1965). “A Machine-Oriented Logic Based on the Resolution Principle”.
In: J. ACM 12.1, pp. 23–41. issn: 0004-5411. doi: 10.1145/321250.321253. url:
https://doi.org/10.1145/321250.321253.

23

https://books.google.fr/books?id=brWEAAAAIAAJ
https://books.google.fr/books?id=brWEAAAAIAAJ
https://www.sciencedirect.com/science/article/pii/074771719290011R
https://www.sciencedirect.com/science/article/pii/074771719290011R
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/321250.321253

	Introduction
	First-order syntax
	First-order unification
	First-order matching
	Second-order syntax
	Second-order matching

	Higher-order syntax
	Mathematical prolegomena
	Signatures
	The -terms
	The -calculus
	Higher-order syntax terms

	Matching problem
	The problem
	Matching algorithm
	Completeness
	Implementation

