A Formulation of Second-Order Matching

Djamel Quassim Ait-Moussa

Supervisor: Adrien Guatto

TRE presentation, July 1st 2024

@ Université
Paris Cité

1/16

Pattern matching in programming

» Used in functional programming languages.

» Adopted more and more by other languages, e.g. Rust or Python.

2/16

Pattern matching in programming

» Used in functional programming languages.
» Adopted more and more by other languages, e.g. Rust or Python.

> Allows users to discriminate and destructure symbolic data.

2/16

Pattern matching in programming

» Used in functional programming languages.
» Adopted more and more by other languages, e.g. Rust or Python.

> Allows users to discriminate and destructure symbolic data.

Example

A language expr to manipulate arithmetic expressions.
u=0bB+4)x(7T4+9) w=>5xT7T+4x7+5x9+4x9

2/16

Pattern matching in programming

» Used in functional programming languages.

» Adopted more and more by other languages, e.g. Rust or Python.

> Allows users to discriminate and destructure symbolic data.

Example

A language expr to manipulate arithmetic expressions.
u=0bB+4)x(7T4+9) w=>5xT7T+4x7+5x9+4x9

type expr = Int of int
| Add of expr*expr | Mul of expr*expr
| Div of expr*expr | Sub of expr*expr

2/16

Pattern matching in programming

» Used in functional programming languages.
» Adopted more and more by other languages, e.g. Rust or Python.

> Allows users to discriminate and destructure symbolic data.

Example

A language expr to manipulate arithmetic expressions.
u=0bB+4)x(7T4+9) w=>5xT7T+4x7+5x9+4x9

type expr = Int of int
| Add of expr*expr | Mul of expr*expr
| Div of expr*expr | Sub of expr*expr
let rec dist e = match e with
| Mul(x, Add(y, z)) | Mul(Add(y, z), x) ->
let x' = dist x in
Add(Mul(x', dist y),Mul(dx, dist z))
| Mul(x, y) -> Mul(dist x, dist y)
| Div(x, y) -> Div(dist x, dist y)
| Add(x, y) -> Add(dist x, dist y)
| Sub(x, y) -> Sub(dist x, dist y)

2/16

Theoretical foundation of pattern matching

Given two first-order terms t and u:
» Unification problem: find o such that t[o] = u[o].
» Matching problem: find o such that t[o] =

Example

t=Mul(x, Add(y, z))

o={x— Add(5, 4),y—7,z— 9}
tlo] = MuL(Add(5, 4), Add(7, 9))

u (u closed).

3/16

Theoretical foundation of pattern matching

Given two first-order terms t and u:

» Unification problem: find o such that t[o] = u[o].

» Matching problem: find o such that t[o] = u (u closed).
First-order terms: trees over a signature of operators with fixed
arity.

Example

t=Mul(x, Add(y, z))

o={x— Add(5, 4),y—7,z— 9}

tlo] = Mul(Add(5, 4), Add(7, 9))

Signature: ¥ = {Add: T—->T—-T,Mul:T—>T—T,..}

VAN
x /+\ 5/ \4 7/ \9

3/16

Theoretical foundation of pattern matching

Given two first-order terms t and u:

» Unification problem: find o such that t[o] = u[o].

» Matching problem: find o such that t[o] = u (u closed).
First-order terms: trees over a signature of operators with fixed
arity.

Example

t=Mul(x, Add(y, z))

o={x—Add(5, 4),y—7,z+— 9}

tlo] = Mul(Add(5, 4), AAd(7, 9))

Signature: ¥ = {Add: T - T—-T,Mul: T - T —T,...}

Finding the solution o is reverting the operation t[—].

3/16

Theoretical foundation of pattern matching

Given two first-order terms t and u:

» Unification problem: find o such that t[o] = u[o].

» Matching problem: find o such that t[o] = u (u closed).
First-order terms: trees over a signature of operators with fixed
arity.

Example

t=Mul(x, Add(y, z))

o={x—Add(5, 4),y—7,z+— 9}

tlo] = Mul(Add(5, 4), AAd(7, 9))

Signature: ¥ ={Add: T—->T—-T,Mul:T—-T—T,..}

Finding the solution o is reverting the operation t[—].

Theorem (Robinson, 1965)

First-order unification is decidable, and when a solution exists, there
exists a unique most general solution that is computable.

3/16

Binding

What if we want to add a sum operator to our expr language?

5 16 16
w=3 Y ixi wm=(1+16-1)xY ixi
i=1 j=1 i=1

4/16

Binding

What if we want to add a sum operator to our expr language?

5 16 16
w=3 Y ixi wm=(1+16-1)xY ixi
i=1 j=1 i=1

Idea 1: use first-order terms

type expr = Int of int | Add of expr * expr |
| Var of string
| Sum of expr * expr * string * expr

E.g. uj is represented by
Sum(1, 5, "i", Sum(1, 16, "j", Mul(Var "i", Vvar "i"))).

4/16

Binding

What if we want to add a sum operator to our expr language?

5 16 16
w=> Y ixi wm=(1+16-1) x> ixi
i=1 j=1 i=1

Idea 1: use first-order terms

type expr = Int of int | Add of expr * expr |
| var of string

* * *

| Sum of expr expr string expr
E.g. uj is represented by

Sum(1, 5, "i", Sum(1, 16, "j", Mul(var "i", var "i"))).)

Problems

» Pattern matching cannot express symbolic binding.

4/16

Binding

What if we want to add a sum operator to our expr language?

5 16 16
w=> Y ixi wm=(1+16-1) x> ixi
i=1 j=1 i=1

Idea 1: use first-order terms

type expr = Int of int | Add of expr * expr |
| var of string
| Sum of expr * *

expr string
E.g. uj is represented by
Sum(1, 5, "i", Sum(1, 16, "j", Mul(var "i", var "i"))).

expr

V

Problems
» Pattern matching cannot express symbolic binding.

» Similar, repetitive algorithms to handle symbolic binding, such
as substitution, equality modulo renaming bound variables, etc.
V.

4/16

Binding

What if we want to add a sum operator to our expr language?

5 16 16
w=3 Y ixi wm=(1+16-1)xY ixi
i=1 j=1 i=1
Idea 2 (sketch): add a binding construct J

4/16

Binding

What if we want to add a sum operator to our expr language?

5 16 16
w=3 Y ixi wm=(1+16-1)xY ixi
i=1 j=1 i=1

Idea 2 (sketch): add a binding construct

type expr = Int of mt | Add of expr*expr | ..
(* implicitly deflned *)
| Sum of expr * expr * (expr = expr)

4/16

Binding

What if we want to add a sum operator to our expr language?

5 16 16
w=3 Y ixi wm=(1+16-1)xY ixi
i=1 j=1 i=1

Idea 2 (sketch): add a binding construct

type expr = Int of int | Add of expr*expr | ...
| Sum of expr * expr * (expr => expr)

4/16

Binding

What if we want to add a sum operator to our expr language?

5 16 16
w=3 Y ixi wm=(1+16-1)xY ixi
i=1 j=1 i=1

Idea 2 (sketch): add a binding construct

type expr = Int of int | Add of expr*expr | ...
| Sum of expr * expr * (expr = expr)

E.g. u; is represented by sum(1,5,\i.Sum(1,16,)j.Mul(i,i)))

4/16

Binding
What if we want to add a sum operator to our expr language?

16

5 16
w=3 Y ixi wm=(1+16-1)xY ixi

i=1 j=1 i=1

Idea 2 (sketch): add a binding construct

type expr = Int of int | Add of expr*expr |
| Sum of expr * expr * (expr = expr)

E.g. u; is represented by sum(1,5,\i.Sum(1,16,)j.Mul(i,i)))

match u; with (* try to optimize nested sums *)
| sum(x, y, Ai.Sum(z, t, Aj.f(i)))
-> Mul(Add(1,Sub(t, z)), Sum(x, y)Ai.z(1i))

4/16

Binding
What if we want to add a sum operator to our expr language?

16

5 16
w=3 Y ixi wm=(1+16-1)xY ixi

i=1 j=1 i=1

Idea 2 (sketch): add a binding construct

type expr = Int of int | Add of expr*expr |
| Sum of expr * expr * (expr = expr)

E.g. u; is represented by sum(1,5,\i.Sum(1,16,)j.Mul(i,i)))

match u; with (* try to optimize nested sums *)
| sum(x, y, Ai.Sum(z, t, Aj.f(i)))
-> Mul(Add(1,Sub(t, z)), Sum(x, y)Ai.z(1i))

» 1 matches the pattern, becomes uy

4/16

Theoretical foundation of second-order matching

Given two terms t and u:
» Unification problem: find o such that t[o] = u[o].
» Matching problem: find o such that t[o] = u (u closed).

terms: trees over a signature of operators with fixed
arity,

5/16

Theoretical foundation of second-order matching

Given two second-order terms t and u:
» Unification problem: find o such that t[o] = u[o].
» Matching problem: find o such that t[o] = u (u closed).

Second-order terms: trees over a signature of operators with fixed
arity, and a binding construct in the form “Ax.t”.

5/16

Theoretical foundation of second-order matching

Given two second-order terms ¢ and u:
» Unification problem: find o such that t[o] = u[o].
» Matching problem: find o such that t[o] = u (u closed).

Second-order terms: trees over a signature of operators with fixed
arity, and a binding construct in the form “Ax.t”.

Example

t=Sum(x, y, Ai.Sum(z, t, Aj.f(1i)))
c={x—1,y—=5z—1,t— 16,f — A\iMul(i, i)}
tlol]=sum(1, 5, Ai.Sum(1, 16, Aj.Mul(i, i)))
Signature: ¥* +~ Y U{sSum: T—-T — (T — T) — T}

5/16

Theoretical foundation of second-order matching

Given two second-order terms ¢ and u:
» Unification problem: find o such that t[o] = u[o].
» Matching problem: find o such that t[o] = u (u closed).

Second-order terms: trees over a signature of operators with fixed
arity, and a binding construct in the form “Ax.t”.

Example

t=Sum(x, y, Ai.Sum(z, t, Aj.f(1i)))
c={x—1,y—=5z—1,t— 16,f — A\iMul(i, i)}
tlol]=sum(1, 5, Ai.Sum(1, 16, Aj.Mul(i, i)))
Signature: ¥* «~ Y U{Sum: T—-T - (T - T) — T}

Theorem (Huet, 1976)

Second-order matching is decidable.

5/16

Goals in this TRE

» Reformulate Huet and Lang (1978)’s second-order matching
algorithm in a declarative way.

> Give concise and complete proofs of correctness and
termination.

» Implement the algorithm in OCaml.

6/16

Goals in this TRE

» Reformulate Huet and Lang (1978)’s second-order matching
algorithm in a declarative way.

> Give concise and complete proofs of correctness and
termination.

» Implement the algorithm in OCaml.

Non-goals:
» Design a programming language implementing
second-order matching.

6/16

Second-order abstract syntax (1/3)

Types: 7,0 =T | 7 — v.
First-order types: T, T - T, T — T — T,...
Second-order types: 71 — ... — 7, = T where (7;)1<i<n are
first-order types.

7/16

Second-order abstract syntax (1/3)

Types: 7,0 =T | 7 — v.
First-order types: T, T - T, T — T — T,...
Second-order types: 71 — ... — 7, = T where (7;)1<i<n are
first-order types.

Signatures: A signature X is a set of second-order typed operators.

7/16

Second-order abstract syntax (1/3)

Types: T,v =T | T — v.
First-order types: T, T - T, T — T — T,...
Second-order types: 71 — ... — 7, — T where (7;)1<i<, are
first-order types.

Signatures: A signature X is a set of second-order typed operators.

Example
Y={Add: T->T—->T,Mul:T—T—T,

Sub: T—-T—T,Div: T —- T — T,
Sum: T —»T— (T—T)— T}

7/16

Second-order abstract syntax (1/3)

Types: 7,0 =T | 7 — v.
First-order types: T, T - T, T — T — T,...
Second-order types: 71 — ... — 7, = T where (7;)1<i<n are
first-order types.

Signatures: A signature X is a set of second-order typed operators.

Example
Y={Add: T->T—->T,Mul:T—T—T,

Sub: T—-T—T,Div: T —- T — T,
Sum: T —»T— (T—T)— T}

Add has a first-order type, while Sum has a second-order type

7/16

Second-order abstract syntax (1/3)
Types: 7,0 =T | 7 — v.
First-order types: T, T - T, T — T — T,...

Second-order types: 71 — ... — 7, = T where (7;)1<i<n are
first-order types.

Signatures: A signature X is a set of second-order typed operators.

Example

Y={Add: T->T—->T,Mul:T—T—T,
Sub: T—-T—T,Div: T —- T — T,
Sum: T —»T— (T—T)— T}

Add has a first-order type, while Sum has a second-order type

Contexts: A context I is a set of first-order typed variables

Example

F={x:T, f:T—T} J

7/16

Second-order abstract syntax (2/3)

8/16

Second-order abstract syntax (2/3)

Pre-terms: t == x | F | a(t1,...,t,) | Ax.t (a variable or operator)

8/16

Second-order abstract syntax (2/3)

Pre-terms: t == x | F | a(t1,...,t,) | Ax.t (a variable or operator)
Terms: (B-short n-long A-terms)
I''x:TkHt:v

P'FXxt:T—wo

YU'sa:mp—...—w 17 —T (T ui : Ti)i<i<n
'ta(up,...,uy): T

8/16

Second-order abstract syntax (2/3)

Pre-terms: t == x | F | a(t1,...,t,) | Ax.t (a variable or operator)
Terms: (B-short n-long A-terms)
I''x:TkHt:v

P'FXxt:T—wo

YU'sa:mp—...—w 17 —T (T ui : Ti)i<i<n
'ta(up,...,uy): T

Example
P={x:T,y:T,f:T— T}
Y¥>S8um: T—-T— (T—T)—T
INi:T>f:T—>T ri:T>i:T
I'sx:T 's>y:T Li:THfFGE):T
TFx:T TFy:T TFASG):T—T
I+ sum(x, y, Ai.f(i)) : T

8/16

Second-order abstract syntax (3/3)

Substitution: a set {x; — t1,...,x, — t,}, denoted o or p.
Applying a substitution to a term hereditarily: replacing each

each free occurrence of an x; in t with t;, and apply the arguments it
had.

9/16

Second-order abstract syntax (3/3)

Substitution: a set {x; — t1,...,x, — t,}, denoted o or p.
Applying a substitution to a term hereditarily: replacing each

each free occurrence of an x; in t with t;, and apply the arguments it
had.

Example

Ay.F(x, y)[x = G(A),y — G(B)] = \y.F(G(A), y)

9/16

Second-order abstract syntax (3/3)

Substitution: a set {x; — t1,...,x, — t,}, denoted o or p.
Applying a substitution to a term hereditarily: replacing each

each free occurrence of an x; in t with t;, and apply the arguments it
had.

Example

Ay.F(x, y)[x = G(A),y — G(B)] = \y.F(G(A), y)

f(F(y)7A)[f — Aa b'G(H(b)7a)7y = B] = G(H(A)7F(B))

9/16

Second-order abstract syntax (3/3)

Substitution: a set {x; — t1,...,x, — t,}, denoted o or p.
Applying a substitution to a term hereditarily: replacing each

each free occurrence of an x; in t with t;, and apply the arguments it
had.

Example

Ay.F(x, y)[x = G(A),y — G(B)] = \y.F(G(A), y)

f(F(y)7A)[f — Aa b'G(H(b)7a)7y = B] = G(H(A)7F(B))

Definition

A closed substitution o1 is more general than o9 if 01 C 09.

9/16

Matching problem

Definition (Matching problem)

A matching problem is a triple (¢, u, 7), denoted t <7 u, such that
Fkt:7and Dk u: T |

Definition (Solution)

We call solution to the problem t <7 u any closed substitution o such
that t[o] = u. We denote the set of solutions for by Fy<z.

10/16

Matching problem

Definition (Matching problem)

A matching problem is a triple (¢, u, 7), denoted t <7 u, such that
Fkt:7and Dk u: T |

Definition (Solution)

We call solution to the problem t <7 u any closed substitution o such
that t[o] = u. We denote the set of solutions for by Fy<z.

v

Example

Given the problem f(A, g(B)) <7 A, possible solutions are
o1 ={f— Axy.A}
o2 ={f — Axy.A g — A\x.x}

o3 ={f — Axy.x}
o1 is more general than o, while o1 and o3 cannot be compared.

10/16

Solutions to a matching problem

Remark

Given the problem f(A, g(B)) <7 A, for any closed term t,
oy = {f — Ax y.x, g+ t} is a solution. But this is artificial: these
solutions are induced by the general 0 = {f — Ax y.x}.

11/16

Solutions to a matching problem

Remark

Given the problem f(A, g(B)) <7 A, for any closed term t,
oy = {f — Ax y.x, g+ t} is a solution. But this is artificial: these
solutions are induced by the general 0 = {f — Ax y.x}.

Lemma (Canonical solution)

Leto € Fi<zy. There exists a unique c(o) € Fi<ry such that c(o) C o
and c(o) is minimal for C in Fy<z,. If c(0) = o we say that o

is canonical.)

11/16

Solutions to a matching problem

Remark

Given the problem f(A, g(B)) <7 A, for any closed term t,
oy = {f — Ax y.x, g+ t} is a solution. But this is artificial: these
solutions are induced by the general 0 = {f — Ax y.x}.

Lemma (Canonical solution)

Leto € Fi<zy. There exists a unique c(o) € Fi<ry such that c(o) C o
and c(o) is minimal for C in Fy<z,. If c(0) = o we say that o

is canonical.

Definition (Canonical solutions set)
We define S;<zy == {c(0) | 0 € Fi<zu}

11/16

Matching inference system (1/2)

T|AFt<Tu-o

1) t = Ax.t": add x to the context A of bound variables.

FAx:TFt<judo

INTRODUCE T
FNAF Mt <;7" Axu-do

12/16

Matching inference system (1/2)

T|AFt<Tu-o

1) t = Ax.t": add x to the context A of bound variables.

FAx:TFt<judo
T|AF Mt <} Axu-o

INTRODUCE

2)t =a(ty,...,t,) where ais an operator or a bound variable:

» Check that u is of the form a(uy, ..., uy).
> Find solution o to t; <3' uy.

> Find solution o3 to o] <72 up.

> ...

YUASa:m X...1 =T
(F|A|—ti[0',-_1o...o(fl]h S;’ ui—|ai)1§,~§n

SIMPLIFY T
F'NAFa(t,... ty) <7 a(ur,...,up) 1op0...001

12/16

Matching inference system (2/2)

' AFt<fu-do

3)t=f(tr,...,t):
» Choose a value for the variable f.

> Substitute it, then solve the remaining problem.

13/16

Matching inference system (2/2)

' AFt<fu-do

3)t=f(tr,...,t):
» Choose a value for the variable f.

> Substitute it, then solve the remaining problem.

Intuition

The choice for f must be closed and of the form Axy ... x,.b(v1, . ..

7vM)‘

13/16

Matching inference system (2/2)

' AFt<fu-do

3)t=f(tr,...,t):
» Choose a value for the variable f.

> Substitute it, then solve the remaining problem.

0:={f— dxr...x0%}
1<i<n LIAFf(t,...,t)[0]n <7 u-do

PrROJECT — =
Df: _|AFf(t,...,ta) <pudoob
Intuition
The choice for f must be closed and of the form Axi ... x,.b(vi,..., Vm).
» Either bis one of x1, ..., x,: we PROJECT

13/16

Matching inference system (2/2)

' AFt<fu-do

3)t=f(tr,...,t):
» Choose a value for the variable f.

> Substitute it, then solve the remaining problem.

0:={f = Ax1 ... X FOYL - oo Yo fi(X0s ooy Xy Y1y oo Vi) T
Tofiiofmi | AR f(t, o t)[0]n <5 F(ur,...,un) Ho

IMITATE 5
Df i | AFf(t,oooytn) <5 Fur,...,um) 4 (000) —fi,...,fm

Intuition
The choice for f must be closed and of the form Axi ... x,.b(vi, ..., Vm).
» Either bis one of x1, ..., x,: we PROJECT

» Or bis an operator F € 3: we IMITATE, and introduce m variables for the v;’s

13/16

Soundness and completeness of the system

Theorem (Soundness)

If we haveT' |) =t <7 u - o, then o is a canonical solution to the
problem t <7 u.

14/16

Soundness and completeness of the system

Theorem (Soundness)

If we haveT' |) =t <7 u - o, then o is a canonical solution to the
problem t <7 u.

Theorem (Completeness)

Forallo € Si<7y, we have T | O-t<Fu-o.

14/16

Soundness and completeness of the system

Theorem (Soundness)

If we haveT' | O - t <% u -0, then o is a canonical solution to the
problem t <7 u.

Theorem (Completeness)

Forallo € Si<7y, we have T |0Ft<Tu-o.

Intuition for the proof of completeness

» We reason by well-founded induction on the pair (u, t) equipped
with the lexicographic order < X, < where < is the structural
order on terms; and we proceed by cases on t.

» For each case and each o, we choose a rule (e.g. SIMPLIFY) and
express o as a some e(o1,...,0,) where the o; are solutions to
a smaller problem appearing as a premise in the rule.

14/16

The inference system is an algorithm
Judgement input and judgement output

FAFt<fud o
—_—

input output

15/16

The inference system is an algorithm

Judgement input and judgement output

FAFt<fud o
—_—
input output

For all the rules (INTRODUCE, SIMPLIFY, PROJECT, IMITATE):

> Input of the premises <'™ input of the result.

» Output of the result <™ output of the premises.

15/16

The inference system is an algorithm

Judgement input and judgement output

FAFt<fud o
—_—
input output

For all the rules (INTRODUCE, SIMPLIFY, PROJECT, IMITATE):

> Input of the premises <'™ input of the result.

» Output of the result <™ output of the premises.

=> The system specifies a recursive nondeterministic algorithm.

15/16

The inference system is an algorithm

Judgement input and judgement output

FAFt<fud o
—_—
input output

For all the rules (INTRODUCE, SIMPLIFY, PROJECT, IMITATE):

> Input of the premises <'™ input of the result.

» Output of the result <™ output of the premises.

=> The system specifies a recursive nondeterministic algorithm.

Theorem (Termination)
The algorithm specified by the system terminates.

15/16

The inference system is an algorithm

Judgement input and judgement output

FAFt<fud o
—_—
input output
For all the rules (INTRODUCE, SIMPLIFY, PROJECT, IMITATE):

> Input of the premises <'™ input of the result.
» Output of the result <™ output of the premises.

=> The system specifies a recursive nondeterministic algorithm.

Theorem (Termination)

The algorithm specified by the system terminates.

Corollary

The set Sy<z, is computable.

15/16

Conclusion

> We have exposed a simple structure of the set of solutions.

> We presented a second-order matching algorithm as an
inference system made of mostly atomic rules.

Future work

» Improve the inference system: reformulate the IMITATE rule
using smaller, atomic rules.

» Study a functional language implementing the construct.

16/16

Bibliography

E

E

Huet, Gérard (Jan. 1976). “Résolution d’Equations dans des
Langages d’ordre 1,2,...w”. PhD thesis. urL: https://
gallium.inria.fr/~huet/PUBLIC/Huet1976.pdf.
Huet, Gérard and Bernard Lang (1978). “Proving and applying
program transformations expressed with second-order patterns”.
In: Acta Informatica 11.1. 1ssN: 1432-0525. pot:
10.1007/bf00264598. uRL:
http://dx.doi.org/10.1007/bf00264598.
Robinson, J. A. (Jan. 1965). “A Machine-Oriented Logic Based on
the Resolution Principle”. In: J. ACM 12.1, pp. 23-41. 1S5N:
0004-5411.por: 10.1145/321250.321253. urL:
https://doi.org/10.1145/321250.321253.

16/16

https://gallium.inria.fr/~huet/PUBLIC/Huet1976.pdf
https://gallium.inria.fr/~huet/PUBLIC/Huet1976.pdf
https://doi.org/10.1007/bf00264598
http://dx.doi.org/10.1007/bf00264598
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/321250.321253

Differences with report

> filter for a problem — solution to a problem
» solution to a problem — complete+minimal set of solutions

» Monosorted : only one primitive type T

16/16

Misc

Complexity: NP-complete in general. (Lewis D. Baxter, The
Complexity of Unification, Ph.D. Thesis, University of Waterloo, 1976)

16/16

