
A Formulation of Second-Order Matching

Djamel Ouassim Ait-Moussa

Supervisor: Adrien Guatto

TRE presentation, July 1st 2024

1 / 16

Pattern matching in programming

I Used in functional programming languages.
I Adopted more and more by other languages, e.g. Rust or Python.

I Allows users to discriminate and destructure symbolic data.

Example
A language expr to manipulate arithmetic expressions.

u1 = (5 + 4)× (7 + 9) u2 = 5× 7 + 4× 7 + 5× 9 + 4× 9

type expr = Int of int
| Add of expr*expr | Mul of expr*expr
| Div of expr*expr | Sub of expr*expr

let rec dist e = match e with
| Mul(x, Add(y, z)) | Mul(Add(y, z), x) ->

let x' = dist x in
Add(Mul(x', dist y),Mul(dx, dist z))

| Mul(x, y) -> Mul(dist x, dist y)
| Div(x, y) -> Div(dist x, dist y)
| Add(x, y) -> Add(dist x, dist y)
| Sub(x, y) -> Sub(dist x, dist y)

2 / 16

Pattern matching in programming

I Used in functional programming languages.
I Adopted more and more by other languages, e.g. Rust or Python.
I Allows users to discriminate and destructure symbolic data.

Example
A language expr to manipulate arithmetic expressions.

u1 = (5 + 4)× (7 + 9) u2 = 5× 7 + 4× 7 + 5× 9 + 4× 9

type expr = Int of int
| Add of expr*expr | Mul of expr*expr
| Div of expr*expr | Sub of expr*expr

let rec dist e = match e with
| Mul(x, Add(y, z)) | Mul(Add(y, z), x) ->

let x' = dist x in
Add(Mul(x', dist y),Mul(dx, dist z))

| Mul(x, y) -> Mul(dist x, dist y)
| Div(x, y) -> Div(dist x, dist y)
| Add(x, y) -> Add(dist x, dist y)
| Sub(x, y) -> Sub(dist x, dist y)

2 / 16

Pattern matching in programming

I Used in functional programming languages.
I Adopted more and more by other languages, e.g. Rust or Python.
I Allows users to discriminate and destructure symbolic data.

Example
A language expr to manipulate arithmetic expressions.

u1 = (5 + 4)× (7 + 9) u2 = 5× 7 + 4× 7 + 5× 9 + 4× 9

type expr = Int of int
| Add of expr*expr | Mul of expr*expr
| Div of expr*expr | Sub of expr*expr

let rec dist e = match e with
| Mul(x, Add(y, z)) | Mul(Add(y, z), x) ->

let x' = dist x in
Add(Mul(x', dist y),Mul(dx, dist z))

| Mul(x, y) -> Mul(dist x, dist y)
| Div(x, y) -> Div(dist x, dist y)
| Add(x, y) -> Add(dist x, dist y)
| Sub(x, y) -> Sub(dist x, dist y)

2 / 16

Pattern matching in programming

I Used in functional programming languages.
I Adopted more and more by other languages, e.g. Rust or Python.
I Allows users to discriminate and destructure symbolic data.

Example
A language expr to manipulate arithmetic expressions.

u1 = (5 + 4)× (7 + 9) u2 = 5× 7 + 4× 7 + 5× 9 + 4× 9

type expr = Int of int
| Add of expr*expr | Mul of expr*expr
| Div of expr*expr | Sub of expr*expr

let rec dist e = match e with
| Mul(x, Add(y, z)) | Mul(Add(y, z), x) ->

let x' = dist x in
Add(Mul(x', dist y),Mul(dx, dist z))

| Mul(x, y) -> Mul(dist x, dist y)
| Div(x, y) -> Div(dist x, dist y)
| Add(x, y) -> Add(dist x, dist y)
| Sub(x, y) -> Sub(dist x, dist y)

2 / 16

Pattern matching in programming

I Used in functional programming languages.
I Adopted more and more by other languages, e.g. Rust or Python.
I Allows users to discriminate and destructure symbolic data.

Example
A language expr to manipulate arithmetic expressions.

u1 = (5 + 4)× (7 + 9) u2 = 5× 7 + 4× 7 + 5× 9 + 4× 9

type expr = Int of int
| Add of expr*expr | Mul of expr*expr
| Div of expr*expr | Sub of expr*expr

let rec dist e = match e with
| Mul(x, Add(y, z)) | Mul(Add(y, z), x) ->

let x' = dist x in
Add(Mul(x', dist y),Mul(dx, dist z))

| Mul(x, y) -> Mul(dist x, dist y)
| Div(x, y) -> Div(dist x, dist y)
| Add(x, y) -> Add(dist x, dist y)
| Sub(x, y) -> Sub(dist x, dist y)

2 / 16

Theoretical foundation of pattern matching
Given two first-order terms t and u:
I Unification problem: find σ such that t[σ] = u[σ].
I Matching problem: find σ such that t[σ] = u (u closed).

First-order terms: trees over a signature of operators with fixed
arity.

Example
t = Mul(x, Add(y, z))
σ = {x 7→ Add(5, 4), y 7→ 7, z 7→ 9}
t[σ] = Mul(Add(5, 4), Add(7, 9))

Signature: Σ = {Add : T→ T→ T,Mul : T→ T→ T, ...}

×

x +

y z

σ−−−→

×

+

5 4

+

7 9

Theorem (Robinson, 1965)
First-order unification is decidable, and when a solution exists, there
exists a unique most general solution that is computable.

3 / 16

Theoretical foundation of pattern matching
Given two first-order terms t and u:
I Unification problem: find σ such that t[σ] = u[σ].
I Matching problem: find σ such that t[σ] = u (u closed).

First-order terms: trees over a signature of operators with fixed
arity.

Example
t = Mul(x, Add(y, z))
σ = {x 7→ Add(5, 4), y 7→ 7, z 7→ 9}
t[σ] = Mul(Add(5, 4), Add(7, 9))
Signature: Σ = {Add : T→ T→ T,Mul : T→ T→ T, ...}

×

x +

y z

σ−−−→

×

+

5 4

+

7 9

Theorem (Robinson, 1965)
First-order unification is decidable, and when a solution exists, there
exists a unique most general solution that is computable.

3 / 16

Theoretical foundation of pattern matching
Given two first-order terms t and u:
I Unification problem: find σ such that t[σ] = u[σ].
I Matching problem: find σ such that t[σ] = u (u closed).

First-order terms: trees over a signature of operators with fixed
arity.

Example
t = Mul(x, Add(y, z))
σ = {x 7→ Add(5, 4), y 7→ 7, z 7→ 9}
t[σ] = Mul(Add(5, 4), Add(7, 9))
Signature: Σ = {Add : T→ T→ T,Mul : T→ T→ T, ...}

Finding the solution σ is reverting the operation t[−].

Theorem (Robinson, 1965)
First-order unification is decidable, and when a solution exists, there
exists a unique most general solution that is computable.

3 / 16

Theoretical foundation of pattern matching
Given two first-order terms t and u:
I Unification problem: find σ such that t[σ] = u[σ].
I Matching problem: find σ such that t[σ] = u (u closed).

First-order terms: trees over a signature of operators with fixed
arity.

Example
t = Mul(x, Add(y, z))
σ = {x 7→ Add(5, 4), y 7→ 7, z 7→ 9}
t[σ] = Mul(Add(5, 4), Add(7, 9))
Signature: Σ = {Add : T→ T→ T,Mul : T→ T→ T, ...}

Finding the solution σ is reverting the operation t[−].

Theorem (Robinson, 1965)
First-order unification is decidable, and when a solution exists, there
exists a unique most general solution that is computable.

3 / 16

Binding
What if we want to add a sum operator to our expr language?

u1 =
5∑

i=1

16∑
j=1

i × i u2 = (1 + (16− 1))×
16∑
i=1

i × i

Idea 2 (sketch): add a binding construct

E.g. u1 is represented by Sum(1,5,λi.Sum(1,16,λj.Mul(i,i)))

I u1 matches the pattern, becomes u2

4 / 16

Binding
What if we want to add a sum operator to our expr language?

u1 =
5∑

i=1

16∑
j=1

i × i u2 = (1 + (16− 1))×
16∑
i=1

i × i

Idea 1: use first-order terms
type expr = Int of int | Add of expr * expr | ...

| Var of string
| Sum of expr * expr * string * expr

E.g. u1 is represented by
Sum(1, 5, "i", Sum(1, 16, "j", Mul(Var "i", Var "i"))).

Idea 2 (sketch): add a binding construct

E.g. u1 is represented by Sum(1,5,λi.Sum(1,16,λj.Mul(i,i)))

I u1 matches the pattern, becomes u2

4 / 16

Binding
What if we want to add a sum operator to our expr language?

u1 =
5∑

i=1

16∑
j=1

i × i u2 = (1 + (16− 1))×
16∑
i=1

i × i

Idea 1: use first-order terms
type expr = Int of int | Add of expr * expr | ...

| Var of string
| Sum of expr * expr * string * expr

E.g. u1 is represented by
Sum(1, 5, "i", Sum(1, 16, "j", Mul(Var "i", Var "i"))).

Problems
I Pattern matching cannot express symbolic binding.

I Similar, repetitive algorithms to handle symbolic binding, such
as substitution, equality modulo renaming bound variables, etc.

Idea 2 (sketch): add a binding construct

E.g. u1 is represented by Sum(1,5,λi.Sum(1,16,λj.Mul(i,i)))

I u1 matches the pattern, becomes u2

4 / 16

Binding
What if we want to add a sum operator to our expr language?

u1 =
5∑

i=1

16∑
j=1

i × i u2 = (1 + (16− 1))×
16∑
i=1

i × i

Idea 1: use first-order terms
type expr = Int of int | Add of expr * expr | ...

| Var of string
| Sum of expr * expr * string * expr

E.g. u1 is represented by
Sum(1, 5, "i", Sum(1, 16, "j", Mul(Var "i", Var "i"))).

Problems
I Pattern matching cannot express symbolic binding.
I Similar, repetitive algorithms to handle symbolic binding, such

as substitution, equality modulo renaming bound variables, etc.

Idea 2 (sketch): add a binding construct

E.g. u1 is represented by Sum(1,5,λi.Sum(1,16,λj.Mul(i,i)))

I u1 matches the pattern, becomes u2

4 / 16

Binding
What if we want to add a sum operator to our expr language?

u1 =
5∑

i=1

16∑
j=1

i × i u2 = (1 + (16− 1))×
16∑
i=1

i × i

Idea 2 (sketch): add a binding construct

E.g. u1 is represented by Sum(1,5,λi.Sum(1,16,λj.Mul(i,i)))

I u1 matches the pattern, becomes u2

4 / 16

Binding
What if we want to add a sum operator to our expr language?

u1 =
5∑

i=1

16∑
j=1

i × i u2 = (1 + (16− 1))×
16∑
i=1

i × i

Idea 2 (sketch): add a binding construct
type expr = Int of int | Add of expr*expr | ...

| Var of string (* implicitly defined *)
| Sum of expr * expr * (expr =⇒ expr)

E.g. u1 is represented by Sum(1,5,λi.Sum(1,16,λj.Mul(i,i)))

I u1 matches the pattern, becomes u2

4 / 16

Binding
What if we want to add a sum operator to our expr language?

u1 =
5∑

i=1

16∑
j=1

i × i u2 = (1 + (16− 1))×
16∑
i=1

i × i

Idea 2 (sketch): add a binding construct

type expr = Int of int | Add of expr*expr | ...
| Sum of expr * expr * (expr =⇒ expr)

E.g. u1 is represented by Sum(1,5,λi.Sum(1,16,λj.Mul(i,i)))

I u1 matches the pattern, becomes u2

4 / 16

Binding
What if we want to add a sum operator to our expr language?

u1 =
5∑

i=1

16∑
j=1

i × i u2 = (1 + (16− 1))×
16∑
i=1

i × i

Idea 2 (sketch): add a binding construct

type expr = Int of int | Add of expr*expr | ...
| Sum of expr * expr * (expr =⇒ expr)

E.g. u1 is represented by Sum(1,5,λi.Sum(1,16,λj.Mul(i,i)))

I u1 matches the pattern, becomes u2

4 / 16

Binding
What if we want to add a sum operator to our expr language?

u1 =
5∑

i=1

16∑
j=1

i × i u2 = (1 + (16− 1))×
16∑
i=1

i × i

Idea 2 (sketch): add a binding construct

type expr = Int of int | Add of expr*expr | ...
| Sum of expr * expr * (expr =⇒ expr)

E.g. u1 is represented by Sum(1,5,λi.Sum(1,16,λj.Mul(i,i)))

match u1 with (* try to optimize nested sums *)
| Sum(x, y, λi.Sum(z, t, λj.f(i)))

-> Mul(Add(1,Sub(t, z)), Sum(x, y)λi.z(i))

I u1 matches the pattern, becomes u2

4 / 16

Binding
What if we want to add a sum operator to our expr language?

u1 =
5∑

i=1

16∑
j=1

i × i u2 = (1 + (16− 1))×
16∑
i=1

i × i

Idea 2 (sketch): add a binding construct

type expr = Int of int | Add of expr*expr | ...
| Sum of expr * expr * (expr =⇒ expr)

E.g. u1 is represented by Sum(1,5,λi.Sum(1,16,λj.Mul(i,i)))

match u1 with (* try to optimize nested sums *)
| Sum(x, y, λi.Sum(z, t, λj.f(i)))

-> Mul(Add(1,Sub(t, z)), Sum(x, y)λi.z(i))

I u1 matches the pattern, becomes u2

4 / 16

Theoretical foundation of second-order matching
Given two

second-order

terms t and u:
I Unification problem: find σ such that t[σ] = u[σ].
I Matching problem: find σ such that t[σ] = u (u closed).

Second-order

terms: trees over a signature of operators with fixed
arity,

and a binding construct in the form “λx.t”

.

Example
t = Sum(x, y, λi.Sum(z, t, λj.f(i)))
σ = {x 7→ 1, y 7→ 5, z 7→ 1, t 7→ 16, f 7→ λi.Mul(i, i)}
t[σ] = Sum(1, 5, λi.Sum(1, 16, λj.Mul(i, i)))
Signature: Σ∗ ← Σ ∪ {Sum : T→ T→ (T→ T)→ T}

Theorem (Huet, 1976)
Second-order matching is decidable.

5 / 16

Theoretical foundation of second-order matching
Given two second-order terms t and u:
I Unification problem: find σ such that t[σ] = u[σ].
I Matching problem: find σ such that t[σ] = u (u closed).

Second-order terms: trees over a signature of operators with fixed
arity, and a binding construct in the form “λx.t”.

Example
t = Sum(x, y, λi.Sum(z, t, λj.f(i)))
σ = {x 7→ 1, y 7→ 5, z 7→ 1, t 7→ 16, f 7→ λi.Mul(i, i)}
t[σ] = Sum(1, 5, λi.Sum(1, 16, λj.Mul(i, i)))
Signature: Σ∗ ← Σ ∪ {Sum : T→ T→ (T→ T)→ T}

Theorem (Huet, 1976)
Second-order matching is decidable.

5 / 16

Theoretical foundation of second-order matching
Given two second-order terms t and u:
I Unification problem: find σ such that t[σ] = u[σ].
I Matching problem: find σ such that t[σ] = u (u closed).

Second-order terms: trees over a signature of operators with fixed
arity, and a binding construct in the form “λx.t”.

Example
t = Sum(x, y, λi.Sum(z, t, λj.f(i)))
σ = {x 7→ 1, y 7→ 5, z 7→ 1, t 7→ 16, f 7→ λi.Mul(i, i)}
t[σ] = Sum(1, 5, λi.Sum(1, 16, λj.Mul(i, i)))
Signature: Σ∗ ← Σ ∪ {Sum : T→ T→ (T→ T)→ T}

Theorem (Huet, 1976)
Second-order matching is decidable.

5 / 16

Theoretical foundation of second-order matching
Given two second-order terms t and u:
I Unification problem: find σ such that t[σ] = u[σ].
I Matching problem: find σ such that t[σ] = u (u closed).

Second-order terms: trees over a signature of operators with fixed
arity, and a binding construct in the form “λx.t”.

Example
t = Sum(x, y, λi.Sum(z, t, λj.f(i)))
σ = {x 7→ 1, y 7→ 5, z 7→ 1, t 7→ 16, f 7→ λi.Mul(i, i)}
t[σ] = Sum(1, 5, λi.Sum(1, 16, λj.Mul(i, i)))
Signature: Σ∗ ← Σ ∪ {Sum : T→ T→ (T→ T)→ T}

Theorem (Huet, 1976)
Second-order matching is decidable.

5 / 16

Goals in this TRE

I Reformulate Huet and Lang (1978)’s second-order matching
algorithm in a declarative way.

I Give concise and complete proofs of correctness and
termination.

I Implement the algorithm in OCaml.

Non-goals:
I Design a programming language implementing

second-order matching.

6 / 16

Goals in this TRE

I Reformulate Huet and Lang (1978)’s second-order matching
algorithm in a declarative way.

I Give concise and complete proofs of correctness and
termination.

I Implement the algorithm in OCaml.

Non-goals:
I Design a programming language implementing

second-order matching.

6 / 16

Second-order abstract syntax (1/3)
Types: τ, υ ::= T | τ → υ.

First-order types: T,T→ T,T→ T→ T, ...
Second-order types: τ1 → . . .→ τn → T where (τi)1≤i≤n are
first-order types.

Signatures: A signature Σ is a set of second-order typed operators.

Example

Σ = {Add : T→ T→ T,Mul : T→ T→ T,
Sub : T→ T→ T,Div : T→ T→ T,
Sum : T→ T→ (T→ T)→ T}

Add has a first-order type, while Sum has a second-order type

Contexts: A context Γ is a set of first-order typed variables

Example

Γ = {x : T, f : T→ T}

7 / 16

Second-order abstract syntax (1/3)
Types: τ, υ ::= T | τ → υ.

First-order types: T,T→ T,T→ T→ T, ...
Second-order types: τ1 → . . .→ τn → T where (τi)1≤i≤n are
first-order types.

Signatures: A signature Σ is a set of second-order typed operators.

Example

Σ = {Add : T→ T→ T,Mul : T→ T→ T,
Sub : T→ T→ T,Div : T→ T→ T,
Sum : T→ T→ (T→ T)→ T}

Add has a first-order type, while Sum has a second-order type

Contexts: A context Γ is a set of first-order typed variables

Example

Γ = {x : T, f : T→ T}

7 / 16

Second-order abstract syntax (1/3)
Types: τ, υ ::= T | τ → υ.

First-order types: T,T→ T,T→ T→ T, ...
Second-order types: τ1 → . . .→ τn → T where (τi)1≤i≤n are
first-order types.

Signatures: A signature Σ is a set of second-order typed operators.

Example

Σ = {Add : T→ T→ T,Mul : T→ T→ T,
Sub : T→ T→ T,Div : T→ T→ T,
Sum : T→ T→ (T→ T)→ T}

Add has a first-order type, while Sum has a second-order type

Contexts: A context Γ is a set of first-order typed variables

Example

Γ = {x : T, f : T→ T}

7 / 16

Second-order abstract syntax (1/3)
Types: τ, υ ::= T | τ → υ.

First-order types: T,T→ T,T→ T→ T, ...
Second-order types: τ1 → . . .→ τn → T where (τi)1≤i≤n are
first-order types.

Signatures: A signature Σ is a set of second-order typed operators.

Example

Σ = {Add : T→ T→ T,Mul : T→ T→ T,
Sub : T→ T→ T,Div : T→ T→ T,
Sum : T→ T→ (T→ T)→ T}

Add has a first-order type, while Sum has a second-order type

Contexts: A context Γ is a set of first-order typed variables

Example

Γ = {x : T, f : T→ T}

7 / 16

Second-order abstract syntax (1/3)
Types: τ, υ ::= T | τ → υ.

First-order types: T,T→ T,T→ T→ T, ...
Second-order types: τ1 → . . .→ τn → T where (τi)1≤i≤n are
first-order types.

Signatures: A signature Σ is a set of second-order typed operators.

Example

Σ = {Add : T→ T→ T,Mul : T→ T→ T,
Sub : T→ T→ T,Div : T→ T→ T,
Sum : T→ T→ (T→ T)→ T}

Add has a first-order type, while Sum has a second-order type

Contexts: A context Γ is a set of first-order typed variables

Example

Γ = {x : T, f : T→ T}
7 / 16

Second-order abstract syntax (2/3)

Pre-terms: t ::= x | F | a(t1, . . . , tn) | λx.t (a variable or operator)
Terms: Γ ` t : τ (β-short η-long λ-terms)

Γ, x : T ` t : υ

Γ ` λx.t : T→ υ

Σ ∪ Γ 3 a : τ1 → . . .→ τn → T (Γ ` ui : τi)1≤i≤n

Γ ` a(u1, . . . , un) : T

Example
Γ = {x : T, y : T, f : T → T}
Σ 3 Sum : T → T → (T → T) → T

Γ 3 x : T
Γ ` x : T

Γ 3 y : T
Γ ` y : T

Γ, i : T 3 f : T → T Γ, i : T 3 i : T
Γ, i : T ` f (i) : T

Γ ` λi.f (i) : T → T
Γ ` Sum(x, y, λi.f (i)) : T

8 / 16

Second-order abstract syntax (2/3)
Pre-terms: t ::= x | F | a(t1, . . . , tn) | λx.t (a variable or operator)

Terms: Γ ` t : τ (β-short η-long λ-terms)

Γ, x : T ` t : υ

Γ ` λx.t : T→ υ

Σ ∪ Γ 3 a : τ1 → . . .→ τn → T (Γ ` ui : τi)1≤i≤n

Γ ` a(u1, . . . , un) : T

Example
Γ = {x : T, y : T, f : T → T}
Σ 3 Sum : T → T → (T → T) → T

Γ 3 x : T
Γ ` x : T

Γ 3 y : T
Γ ` y : T

Γ, i : T 3 f : T → T Γ, i : T 3 i : T
Γ, i : T ` f (i) : T

Γ ` λi.f (i) : T → T
Γ ` Sum(x, y, λi.f (i)) : T

8 / 16

Second-order abstract syntax (2/3)
Pre-terms: t ::= x | F | a(t1, . . . , tn) | λx.t (a variable or operator)
Terms: Γ ` t : τ (β-short η-long λ-terms)

Γ, x : T ` t : υ

Γ ` λx.t : T→ υ

Σ ∪ Γ 3 a : τ1 → . . .→ τn → T (Γ ` ui : τi)1≤i≤n

Γ ` a(u1, . . . , un) : T

Example
Γ = {x : T, y : T, f : T → T}
Σ 3 Sum : T → T → (T → T) → T

Γ 3 x : T
Γ ` x : T

Γ 3 y : T
Γ ` y : T

Γ, i : T 3 f : T → T Γ, i : T 3 i : T
Γ, i : T ` f (i) : T

Γ ` λi.f (i) : T → T
Γ ` Sum(x, y, λi.f (i)) : T

8 / 16

Second-order abstract syntax (2/3)
Pre-terms: t ::= x | F | a(t1, . . . , tn) | λx.t (a variable or operator)
Terms: Γ ` t : τ (β-short η-long λ-terms)

Γ, x : T ` t : υ

Γ ` λx.t : T→ υ

Σ ∪ Γ 3 a : τ1 → . . .→ τn → T (Γ ` ui : τi)1≤i≤n

Γ ` a(u1, . . . , un) : T

Example
Γ = {x : T, y : T, f : T → T}
Σ 3 Sum : T → T → (T → T) → T

Γ 3 x : T
Γ ` x : T

Γ 3 y : T
Γ ` y : T

Γ, i : T 3 f : T → T Γ, i : T 3 i : T
Γ, i : T ` f (i) : T

Γ ` λi.f (i) : T → T
Γ ` Sum(x, y, λi.f (i)) : T

8 / 16

Second-order abstract syntax (3/3)
Substitution: a set {x1 7→ t1, . . . , xn 7→ tn}, denoted σ or ρ.
Applying a substitution to a term hereditarily: replacing each
each free occurrence of an xi in t with ti , and apply the arguments it
had.

Example

λy.F(x, y)[x 7→ G(A), y 7→ G(B)] = λy.F(G(A), y)

f (F(y),A)[f 7→ λa b.G(H (b), a), y 7→ B] = G(H (A), F(B))

Definition
A closed substitution σ1 is more general than σ2 if σ1 ⊆ σ2.

9 / 16

Second-order abstract syntax (3/3)
Substitution: a set {x1 7→ t1, . . . , xn 7→ tn}, denoted σ or ρ.
Applying a substitution to a term hereditarily: replacing each
each free occurrence of an xi in t with ti , and apply the arguments it
had.

Example

λy.F(x, y)[x 7→ G(A), y 7→ G(B)] = λy.F(G(A), y)

f (F(y),A)[f 7→ λa b.G(H (b), a), y 7→ B] = G(H (A), F(B))

Definition
A closed substitution σ1 is more general than σ2 if σ1 ⊆ σ2.

9 / 16

Second-order abstract syntax (3/3)
Substitution: a set {x1 7→ t1, . . . , xn 7→ tn}, denoted σ or ρ.
Applying a substitution to a term hereditarily: replacing each
each free occurrence of an xi in t with ti , and apply the arguments it
had.

Example

λy.F(x, y)[x 7→ G(A), y 7→ G(B)] = λy.F(G(A), y)

f (F(y),A)[f 7→ λa b.G(H (b), a), y 7→ B] = G(H (A), F(B))

Definition
A closed substitution σ1 is more general than σ2 if σ1 ⊆ σ2.

9 / 16

Second-order abstract syntax (3/3)
Substitution: a set {x1 7→ t1, . . . , xn 7→ tn}, denoted σ or ρ.
Applying a substitution to a term hereditarily: replacing each
each free occurrence of an xi in t with ti , and apply the arguments it
had.

Example

λy.F(x, y)[x 7→ G(A), y 7→ G(B)] = λy.F(G(A), y)

f (F(y),A)[f 7→ λa b.G(H (b), a), y 7→ B] = G(H (A), F(B))

Definition
A closed substitution σ1 is more general than σ2 if σ1 ⊆ σ2.

9 / 16

Matching problem

Definition (Matching problem)

A matching problem is a triple (t, u, τ), denoted t ≤τ
? u, such that

Γ ` t : τ and ∅ ` u : τ .

Definition (Solution)
We call solution to the problem t ≤τ

? u any closed substitution σ such
that t[σ] = u. We denote the set of solutions for by Ft≤τ

?u .

Example

Given the problem f (A, g(B)) ≤T
? A, possible solutions are

σ1 = {f 7→ λx y.A}
σ2 = {f 7→ λx y.A, g 7→ λx.x}
σ3 = {f 7→ λx y.x}

σ1 is more general than σ2, while σ1 and σ3 cannot be compared.

10 / 16

Matching problem

Definition (Matching problem)

A matching problem is a triple (t, u, τ), denoted t ≤τ
? u, such that

Γ ` t : τ and ∅ ` u : τ .

Definition (Solution)
We call solution to the problem t ≤τ

? u any closed substitution σ such
that t[σ] = u. We denote the set of solutions for by Ft≤τ

?u .

Example

Given the problem f (A, g(B)) ≤T
? A, possible solutions are

σ1 = {f 7→ λx y.A}
σ2 = {f 7→ λx y.A, g 7→ λx.x}
σ3 = {f 7→ λx y.x}

σ1 is more general than σ2, while σ1 and σ3 cannot be compared.

10 / 16

Solutions to a matching problem

Remark

Given the problem f (A, g(B)) ≤T
? A, for any closed term t ,

σt = {f 7→ λx y.x, g 7→ t} is a solution. But this is artificial: these
solutions are induced by the general σ = {f 7→ λx y.x}.

Lemma (Canonical solution)
Let σ ∈ Ft≤τ

?u . There exists a unique c(σ) ∈ Ft≤τ
?u such that c(σ) ⊆ σ

and c(σ) is minimal for ⊆ in Ft≤τ
?u . If c(σ) = σ we say that σ

is canonical.

Definition (Canonical solutions set)
We define St≤τ

?u
::= {c(σ) | σ ∈ Ft≤τ

?u}

11 / 16

Solutions to a matching problem

Remark

Given the problem f (A, g(B)) ≤T
? A, for any closed term t ,

σt = {f 7→ λx y.x, g 7→ t} is a solution. But this is artificial: these
solutions are induced by the general σ = {f 7→ λx y.x}.

Lemma (Canonical solution)
Let σ ∈ Ft≤τ

?u . There exists a unique c(σ) ∈ Ft≤τ
?u such that c(σ) ⊆ σ

and c(σ) is minimal for ⊆ in Ft≤τ
?u . If c(σ) = σ we say that σ

is canonical.

Definition (Canonical solutions set)
We define St≤τ

?u
::= {c(σ) | σ ∈ Ft≤τ

?u}

11 / 16

Solutions to a matching problem

Remark

Given the problem f (A, g(B)) ≤T
? A, for any closed term t ,

σt = {f 7→ λx y.x, g 7→ t} is a solution. But this is artificial: these
solutions are induced by the general σ = {f 7→ λx y.x}.

Lemma (Canonical solution)
Let σ ∈ Ft≤τ

?u . There exists a unique c(σ) ∈ Ft≤τ
?u such that c(σ) ⊆ σ

and c(σ) is minimal for ⊆ in Ft≤τ
?u . If c(σ) = σ we say that σ

is canonical.

Definition (Canonical solutions set)
We define St≤τ

?u
::= {c(σ) | σ ∈ Ft≤τ

?u}

11 / 16

Matching inference system (1/2)

Γ | ∆ ` t ≤τ
? u a σ

1) t = λx.t ′: add x to the context ∆ of bound variables.

Introduce
Γ | ∆, x : T ` t ≤τ

? u a σ

Γ | ∆ ` λx.t ≤T→τ
? λx.u a σ

2) t = a(t1, . . . , tn) where a is an operator or a bound variable:
I Check that u is of the form a(u1, . . . , un).
I Find solution σ1 to t1 ≤τ1

? u1.
I Find solution σ2 to t2[σ1] ≤τ2

? u2.
I …

Simplify

Σ ∪∆ 3 a : τ1 × . . . τn → T
(Γ | ∆ ` ti[σi−1 ◦ . . . ◦ σ1]h ≤τi

? ui a σi)1≤i≤n

Γ | ∆ ` a(t1, . . . , tn) ≤T
? a(u1, . . . , un) a σn ◦ . . . ◦ σ1

12 / 16

Matching inference system (1/2)

Γ | ∆ ` t ≤τ
? u a σ

1) t = λx.t ′: add x to the context ∆ of bound variables.

Introduce
Γ | ∆, x : T ` t ≤τ

? u a σ

Γ | ∆ ` λx.t ≤T→τ
? λx.u a σ

2) t = a(t1, . . . , tn) where a is an operator or a bound variable:
I Check that u is of the form a(u1, . . . , un).
I Find solution σ1 to t1 ≤τ1

? u1.
I Find solution σ2 to t2[σ1] ≤τ2

? u2.
I …

Simplify

Σ ∪∆ 3 a : τ1 × . . . τn → T
(Γ | ∆ ` ti[σi−1 ◦ . . . ◦ σ1]h ≤τi

? ui a σi)1≤i≤n

Γ | ∆ ` a(t1, . . . , tn) ≤T
? a(u1, . . . , un) a σn ◦ . . . ◦ σ1

12 / 16

Matching inference system (2/2)

Γ | ∆ ` t ≤τ
? u a σ

3) t = f (t1, . . . , tn):
I Choose a value for the variable f .
I Substitute it, then solve the remaining problem.

Intuition
The choice for f must be closed and of the form λx1 . . . xn.b(v1, . . . , vm).

I Either b is one of x1, . . . , xn : we Project

I Or b is an operator F ∈ Σ: we Imitate, and introduce m variables for the vi ’s

13 / 16

Matching inference system (2/2)

Γ | ∆ ` t ≤τ
? u a σ

3) t = f (t1, . . . , tn):
I Choose a value for the variable f .
I Substitute it, then solve the remaining problem.

Project

θ := {f 7→ λx1 . . . xn.xi}
1 ≤ i ≤ n Γ | ∆ ` f (t1, . . . , tn)[θ]h ≤τ

? u a σ

Γ, f : _ | ∆ ` f (t1, . . . , tn) ≤T
? u a σ ◦ θ

Intuition
The choice for f must be closed and of the form λx1 . . . xn.b(v1, . . . , vm).

I Either b is one of x1, . . . , xn : we Project

I Or b is an operator F ∈ Σ: we Imitate, and introduce m variables for the vi ’s

13 / 16

Matching inference system (2/2)

Γ | ∆ ` t ≤τ
? u a σ

3) t = f (t1, . . . , tn):
I Choose a value for the variable f .
I Substitute it, then solve the remaining problem.

Project

θ := {f 7→ λx1 . . . xn.xi}
1 ≤ i ≤ n Γ | ∆ ` f (t1, . . . , tn)[θ]h ≤τ

? u a σ

Γ, f : _ | ∆ ` f (t1, . . . , tn) ≤T
? u a σ ◦ θ

Intuition
The choice for f must be closed and of the form λx1 . . . xn.b(v1, . . . , vm).

I Either b is one of x1, . . . , xn : we Project

I Or b is an operator F ∈ Σ: we Imitate, and introduce m variables for the vi ’s

13 / 16

Matching inference system (2/2)

Γ | ∆ ` t ≤τ
? u a σ

3) t = f (t1, . . . , tn):
I Choose a value for the variable f .
I Substitute it, then solve the remaining problem.

Imitate

θ := {f 7→ λx1 . . . xn.F(
−−−−−−−−−−−−−−−−−−−−−−−−−−→
λy1, . . . , yki .fi(x1, . . . , xn, y1, . . . , yki))}

Γ, f1 : _, . . . , fm : _ | ∆ ` f (t1, . . . , tn)[θ]h ≤A
? F(u1, . . . , um) a σ

Γ, f : _ | ∆ ` f (t1, . . . , tn) ≤A
? F(u1, . . . , um) a (σ ◦ θ)− f1, . . . , fm

Intuition
The choice for f must be closed and of the form λx1 . . . xn.b(v1, . . . , vm).

I Either b is one of x1, . . . , xn : we Project

I Or b is an operator F ∈ Σ: we Imitate, and introduce m variables for the vi ’s

13 / 16

Soundness and completeness of the system

Theorem (Soundness)
If we have Γ | ∅ ` t ≤τ

? u a σ, then σ is a canonical solution to the
problem t ≤τ

? u.

Theorem (Completeness)

For all σ ∈ St≤τ
?u , we have Γ | ∅ ` t ≤τ

? u a σ.

Intuition for the proof of completeness
I We reason by well-founded induction on the pair (u, t) equipped

with the lexicographic order ≺ ×L ≺ where ≺ is the structural
order on terms; and we proceed by cases on t .

I For each case and each σ, we choose a rule (e.g. Simplify) and
express σ as a some e(σ1, . . . , σn) where the σi are solutions to
a smaller problem appearing as a premise in the rule.

14 / 16

Soundness and completeness of the system

Theorem (Soundness)
If we have Γ | ∅ ` t ≤τ

? u a σ, then σ is a canonical solution to the
problem t ≤τ

? u.

Theorem (Completeness)

For all σ ∈ St≤τ
?u , we have Γ | ∅ ` t ≤τ

? u a σ.

Intuition for the proof of completeness
I We reason by well-founded induction on the pair (u, t) equipped

with the lexicographic order ≺ ×L ≺ where ≺ is the structural
order on terms; and we proceed by cases on t .

I For each case and each σ, we choose a rule (e.g. Simplify) and
express σ as a some e(σ1, . . . , σn) where the σi are solutions to
a smaller problem appearing as a premise in the rule.

14 / 16

Soundness and completeness of the system

Theorem (Soundness)
If we have Γ | ∅ ` t ≤τ

? u a σ, then σ is a canonical solution to the
problem t ≤τ

? u.

Theorem (Completeness)

For all σ ∈ St≤τ
?u , we have Γ | ∅ ` t ≤τ

? u a σ.

Intuition for the proof of completeness
I We reason by well-founded induction on the pair (u, t) equipped

with the lexicographic order ≺ ×L ≺ where ≺ is the structural
order on terms; and we proceed by cases on t .

I For each case and each σ, we choose a rule (e.g. Simplify) and
express σ as a some e(σ1, . . . , σn) where the σi are solutions to
a smaller problem appearing as a premise in the rule.

14 / 16

The inference system is an algorithm

Judgement input and judgement output

Γ | ∆ ` t ≤τ
? u︸ ︷︷ ︸

input

a σ︸︷︷︸
output

For all the rules (Introduce, Simplify, Project, Imitate):
I Input of the premises⇐lin input of the result.
I Output of the result⇐lin output of the premises.

=⇒ The system specifies a recursive nondeterministic algorithm.

Theorem (Termination)
The algorithm specified by the system terminates.

Corollary
The set St≤τ

?u is computable.

15 / 16

The inference system is an algorithm

Judgement input and judgement output

Γ | ∆ ` t ≤τ
? u︸ ︷︷ ︸

input

a σ︸︷︷︸
output

For all the rules (Introduce, Simplify, Project, Imitate):
I Input of the premises⇐lin input of the result.
I Output of the result⇐lin output of the premises.

=⇒ The system specifies a recursive nondeterministic algorithm.

Theorem (Termination)
The algorithm specified by the system terminates.

Corollary
The set St≤τ

?u is computable.

15 / 16

The inference system is an algorithm

Judgement input and judgement output

Γ | ∆ ` t ≤τ
? u︸ ︷︷ ︸

input

a σ︸︷︷︸
output

For all the rules (Introduce, Simplify, Project, Imitate):
I Input of the premises⇐lin input of the result.
I Output of the result⇐lin output of the premises.

=⇒ The system specifies a recursive nondeterministic algorithm.

Theorem (Termination)
The algorithm specified by the system terminates.

Corollary
The set St≤τ

?u is computable.

15 / 16

The inference system is an algorithm

Judgement input and judgement output

Γ | ∆ ` t ≤τ
? u︸ ︷︷ ︸

input

a σ︸︷︷︸
output

For all the rules (Introduce, Simplify, Project, Imitate):
I Input of the premises⇐lin input of the result.
I Output of the result⇐lin output of the premises.

=⇒ The system specifies a recursive nondeterministic algorithm.

Theorem (Termination)
The algorithm specified by the system terminates.

Corollary
The set St≤τ

?u is computable.

15 / 16

The inference system is an algorithm

Judgement input and judgement output

Γ | ∆ ` t ≤τ
? u︸ ︷︷ ︸

input

a σ︸︷︷︸
output

For all the rules (Introduce, Simplify, Project, Imitate):
I Input of the premises⇐lin input of the result.
I Output of the result⇐lin output of the premises.

=⇒ The system specifies a recursive nondeterministic algorithm.

Theorem (Termination)
The algorithm specified by the system terminates.

Corollary
The set St≤τ

?u is computable.
15 / 16

Conclusion

I We have exposed a simple structure of the set of solutions.
I We presented a second-order matching algorithm as an

inference system made of mostly atomic rules.

Future work
I Improve the inference system: reformulate the Imitate rule

using smaller, atomic rules.
I Study a functional language implementing the construct.

16 / 16

Bibliography

Huet, Gérard (Jan. 1976). “Résolution d’Équations dans des
Langages d’ordre 1,2,…,ω.”. PhD thesis. url: https://
gallium.inria.fr/~huet/PUBLIC/Huet1976.pdf.
Huet, Gérard and Bernard Lang (1978). “Proving and applying
program transformations expressed with second-order patterns”.
In: Acta Informatica 11.1. issn: 1432-0525. doi:
10.1007/bf00264598. url:
http://dx.doi.org/10.1007/bf00264598.
Robinson, J. A. (Jan. 1965). “A Machine-Oriented Logic Based on
the Resolution Principle”. In: J. ACM 12.1, pp. 23–41. issn:
0004-5411. doi: 10.1145/321250.321253. url:
https://doi.org/10.1145/321250.321253.

16 / 16

https://gallium.inria.fr/~huet/PUBLIC/Huet1976.pdf
https://gallium.inria.fr/~huet/PUBLIC/Huet1976.pdf
https://doi.org/10.1007/bf00264598
http://dx.doi.org/10.1007/bf00264598
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/321250.321253

Differences with report

I filter for a problem 7→ solution to a problem
I solution to a problem 7→ complete+minimal set of solutions
I Monosorted : only one primitive type T

16 / 16

Misc
Complexity: NP-complete in general. (Lewis D. Baxter, The
Complexity of Unification, Ph.D. Thesis, University of Waterloo, 1976)

16 / 16

